首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Starvation induces vegetative microplasmodia of Physarum polycephalum to differentiate into translationally-dormant sclerotia. The existence and the biochemical nature of stored mRNA in sclerotia is examined in this report. The sclerotia contain about 50% of the poly(A)-containing RNA [poly(A)+RNA] complement of microplasmodia as determined by [3H]-poly(U) hybridization. The sclerotial poly(A)+RNA sequences are associated with proteins in a ribonucleoprotein complex [poly(A)+mRNP] which sediments more slowly than the polysomes. Sclerotial poly(A)+RNP sediments more rapidly than poly(A)+RNP derived from the polysomes of microplasmodia despite the occurrence of poly(A)+RNA molecules of a similar size in both particles suggesting the existence of differences in protein composition. Isolation of poly(A)+RNP by oligo (dT)-cellulose chromatography and the analysis of its associated proteins by polyacrylamide gel electrophoresis show that sclerotial poly(A)+RNP contains at least 14 major polypeptides, 11 of which are different in electrophoretic mobility from the polypeptides found in polysomal poly(A)+RNP. Three of the sclerotial poly(A)+RNP polypeptides are associated with the poly(A) sequence (18, 46, and 52 × 103 mol. wt. components), while the remaining eight are presumably bound to non-poly(A) portions of the poly(A)+RNA. Although distinct from polysomal poly(A)+RNP, the sclerotial poly(A)+RNP is similar in sedimentation behavior and protein composition (with two exceptions) to the microplasmodial free cytoplasmic poly(A)+RNP. The results suggest that dormant sclerotia store mRNA sequences in association with a distinct set of proteins and that these proteins are similar to those associated with the free cytoplasmic poly(A)+RNP of vegetative plasmodia.  相似文献   

4.
These studies were designed to identify the proteins associated with specific mRNAs. L6 myoblasts contain a unique poly(A)-rich H4 mRNA as well as poly(A)-minus H4 mRNA subspecies. We have characterized the proteins present in both poly(A)-rich and poly(A)-minus histone H4 mRNP complexes following ultraviolet cross-linking in vivo. In addition, the muscle-specific myosin heavy chain (MHC) mRNP complex was characterized in myoblasts. [35S]Methionine-labelled poly(A)-rich and poly(A)-minus RNP complexes were prepared from both the polysomal and free (post-polysomal) RNP compartments. From each fraction the mRNP encoding histone H4 or MHC was purified by hybrid selection to a cloned human histone H4 gene or MHC cDNA. A unique set of 6-16 proteins was found bound to each of the specific mRNP complexes. These proteins were a subset of the total population of either polysomal or free RNP proteins and some proteins appeared common among the different hybrid-selected RNP fractions. The results demonstrate that (a) mRNAs bind a different set of proteins depending upon whether they are present in the polysomal or free mRNP fraction; (b) the presence of poly(A) sequences affects the proteins which bind to H4 mRNA in the free RNP compartment.  相似文献   

5.
6.
The 3' AU-rich region of human beta-1 interferon (hu-IFN beta) mRNA was found to act as a translational inhibitory element. The translational regulation of this 3' AU-rich sequence and the effect of its association with the poly(A) tail were studied in cell-free rabbit reticulocyte lysate. A poly(A)-rich hu-IFN beta mRNA (110 A residues) served as an inefficient template for protein synthesis. However, translational efficiency was considerably improved when the poly(A) tract was shortened (11 A residues) or when the 3' AU-rich sequence was deleted, indicating that interaction between these two regions was responsible for the reduced translation of the poly(A)-rich hu-IFN beta mRNA. Differences in translational efficiency of the various hu-IFN beta mRNAs correlated well with their polysomal distribution. The poly(A)-rich hu-IFN beta mRNA failed to form large polysomes, while its counterpart bearing a short poly(A) tail was recruited more efficiently into large polysomes. The AU-rich sequence-binding activity was reduced when the RNA probe contained both the 3' AU-rich sequence and long poly(A) tail, supporting a physical association between these two regions. Further evidence for this interaction was achieved by RNase H protection assay. We suggest that the 3' AU-rich sequence may regulate the translation of hu-IFN beta mRNA by interacting with the poly(A) tail.  相似文献   

7.
Cytoplasmic messenger RNAs of eukaryotic cells are distributed between polysomal and post-polysomal fractions (free) as protein-bound complexes. These studies were designed to determine whether a specific mRNA isolated from different subcellular compartments is complexed with the same family of polypeptides. As a first approach we have examined the proteins associated with mRNA which codes for histone H4. To perform these experiments HeLa cells were exposed to ultraviolet light to cross-link in vivo polypeptides which are closely associated with nucleic acid. To identify the polypeptides associated with mRNA specific for histones a genomic probe for histone H4 mRNA was immobilized on epoxy-cellulose. By hybrid selection specific mRNPs containing histone mRNA were isolated. Our results reveal the existence of a number of polypeptides associated with both polysomal and post-polysomal histone mRNAs. In polysomal histone mRNA two polypeptides of Mr = 49 000 and 52 500 were the major components. In contrast polypeptides of Mr = 43 000 and 57 000 were the major polypeptide components of post-polysomal (or free) histone mRNA. Furthermore, these results also suggest that the polypeptides associated with either polysomal or free H4 histone mRNA represent a subset of proteins found in poly(A)-free fractions or poly(A)-rich mRNA fractions.  相似文献   

8.
We have purified rabbit globin mRNA using oligo(dT)-cellulose and sucrose gradient centrifugation. Both α- and β-globulin mRNA molecules behave heterogeneously with respect to their elution properties during chromatography on oligo(dT)-cellulose. Those fractions eluted at the lowest ionic strength are most active in directing cell-free globin biosynthesis. By making use of hybridization with synthetic [3H]DNA complementary to globin mRNA, we have shown that this technique can be used to quantitate the extent of mRNA purification. Thus, globin mRNA is approximately 90-fold purified from reticulocyte polysomal RNA and originally constituted slightly more than 1% of the polysomal RNA. Since more than 98% of the globin mRNA sequences are bound to oligo(dT)-cellulose, we suggest that most polysomal globin mRNAs contain a poly (A)-rich region and that this region is not of uniform length nor preponderately associated with either the α- or β-globin mRNAs. In addition, we observe that the 9S globin mRNA most resistant to dissociation from oligo (dT)-cellulose is most active in directing globin biosynthesis.  相似文献   

9.
10.
The program of gene expression during the life cycle of Dictyostelium discoideum has been assessed by molecular hybridization of cDNA probes with polysomal RNA extracted at the following different stages of development: vegetative growth, interphase (2.5 hr), aggregation (8 hr), postaggregation (12 hr), and preculmination (18 hr). Several different cDNA probes were used. Two probes were prepared from vegetative stage poly(A+) RNA, one representing all species present and the other enriched for abundant species. A third cDNA probe was prepared from preculmination stage polysomal RNA and a fourth probe consisted of the preculmination stage cDNA depleted in those species also present at the vegetative stage. Hybridization of the various probes with the different polysomal RNA preparations has revealed developmental changes in the mRNA populations. These changes were not detected in an aggregation less mutant under similar conditions of starvation. Abundant RNA species of vegetative cells were found to drop to low levels, especially during the aggregation period. Fifty percent by mass of the RNA present in polysomes at 18 hr is not present during vegetative growth. Some of the new RNA species appeared during interphase and the remaining during the postaggregation period. A gradual increase in the number of copies per cell of certain RNA species comprising both new species as well as some shared with vegetative cells was observed throughout development. Other results indicated that the composition of polysomal and cytoplasmic RNA is similar during vegetative growth but differs markedly at 18 hr of development. Also, cytoplasmic RNA at 18 hr contained, in addition to polysomal RNA, a large proportion by mass of nonpolysomal RNA similar to vegetative RNA. The number of polysomal RNA species detected by this analysis during vegetative growth and during the preculmination stage were estimated to be 3000 and 3700, respectively. The number of copies of these RNA species ranged between 30 and 2000 per cell during vegetative growth and 3 to 300 per cell in polysomes at 18 hr. Developmentally induced RNAs which were preferentially distributed among abundant and intermediate classes were estimated to number 700–900 species.  相似文献   

11.
The effect of ageing on the properties of polysomal poly(A)-containing messenger RNA [poly(A)+ mRNA] of Physarum polycephalum has been investigated. Using poly(U)--Sepharose affinity chromatography it was shown that shortening of the poly(A) tract occurred as the age of the mRNA population increased. Analysis of the poly(A) segments by use of polyacrylamide gel electrophoresis, after digestion of polysomal poly(A)+ mRNA molecules with RNAase A and RNAase T1, revealed that their lengths ranged from 140 to 220 nucleotide residues. A reduction in the efficiency of utilization of mRNA for translation as the age of the mRNA population increased was demonstrated by measuring the proportion of poly(A)+ mRNA present in the polysomal fraction as compared with post-polysomal material.  相似文献   

12.
The binding of rabbit globin mRNA, in-vitro-generated beta-globin mRNA segments, and RNA homopolymers by proteins of rabbit reticulocyte polysomal messenger ribonucleoproteins (mRNP) after SDS gel electrophoresis and electroblotting was examined. The polysomal mRNP proteins have a higher affinity for mRNA than for rRNA and tRNA while having a higher affinity for polypurine than polypyrimidine homopolymers. Binding experiments with synthetic poly(A) and with segments of beta-globin mRNA transcribed from a cDNA in vitro revealed a set of polysomal mRNP proteins which preferentially bind the poly(A)-free beta-globin mRNA. A protein of Mr 90,000 binds specifically the 3'-nontranslated trailer of the poly(A)-free beta-globin mRNA and not the poly(A)-containing globin mRNA. Another set of proteins preferentially binds poly(A). The latter group of proteins contains a prominent species of Mr 72,000, which is most likely the rabbit poly(A)-binding protein. Three polysomal mRNP proteins which bound rabbit globin mRNA did not bind preferentially any of the other RNA probes used.  相似文献   

13.
Representation of genomic kinetic sequence classes and sequence complexities were investigated in nuclear and polysomal RNA of the higher plant Petroselinum sativum (parsley). Two different methods indicated that most if not all polysomal poly(A) -RNA is transcribed from unique sequences. As measured by saturation hybridization in root callus and young leaves 8.7% and 6.2%, respectively, of unique DNA were transcribed in mRNA corresponding to 13.700 and 10.000 average sized genes. Unique nuclear DNA hybridized with an excess of polysomal poly(A)mRNA to the same extent as with total polysomal RNA. 3H-cDNA - poly(A)mRNA hybridization kinetics revealed the presence of two abundance classes with 9.200 and about 30 different mRNAs in leaves and two abundance classes with 10.500 and 960 different mRNAs in callus cells. The existence of plant poly(A)hnRNA was proven both by its fast kinetics of appearance, its length distribution larger than mRNA, and its sequence complexity a few times that of polysomal RNA.  相似文献   

14.
In muscle cells two populations of mRNA are present in the cytoplasm. The majority of mRNA is associated with ribosomes and active in protein synthesis. A small population of cytoplasmic mRNA occur as free mRNA-protein complex and is not associated with ribosomes. This apparently repressed population of mRNA from rat L6 myoblast cells was used to construct a cDNA library. Radioactively labeled cDNA preparations of polysomal and free (or repressed) mRNA populations showed that at least ten recombinant clones preferentially annealed to the cDNA from repressed mRNA. One of these clones was extensively studied. The DNA from a recombinant plasmid D12 hybridized to a 1.3-kb poly(A)-rich mRNA. In proliferating myoblast cells, the 1.3-kb mRNA was more abundant in the polysomal fraction and mostly free in the non-dividing myotubes. In contrast to this mRNA, 90% of alpha and beta actin mRNAs were translated in both myoblasts and myotubes. Further analysis of distribution of the 1.3-kb RNA in the polysomal (active) and free (repressed) fractions in fusion-arrested postmitotic myotubes suggested that fusion of myoblasts was not necessary for the control of translation of this mRNA. Withdrawal of muscle cells from the cell cycle appeared to be involved in regulating translation of this mRNA. The presence of this mRNA was not, however, limited to muscle cells. This mRNA was also present in the repressed state in rat liver and kidney cells. These results, therefore, suggest that the 1.3-kb mRNA is probably translated during a particular phase of the cell cycle and is not translated in terminally differentiated non-dividing cells. Messenger RNA homologous to the 600-base-pair insert of the recombinant plasmid D12 was isolated by hybrid selection procedure from both polysomal mRNA of myoblasts and free mRNA of myotubes. Translation of the hybrid selected mRNAs from both myoblasts and myotubes in rabbit reticulocyte lysate cell-free system synthesized a 40-kDa polypeptide. These results suggest that the repressed population of 1.3-kb mRNA can be translated in vitro. The hybridization pattern of DNA from the recombinant plasmid D12 with rat genomic DNA suggested that the 1.3-kb mRNA is derived from moderately repetitive rat DNA with a repetition frequency of approximately 100 copies per haploid genome.  相似文献   

15.
Poly(A)-containing messenger RNA was isolated from polysomes of Ehrlich ascites tumor cells, and analyzed for sequence complexity by hybridization to its complementary DNA. The results indicate the presence of about 27,000 diverse mRNA species in mouse Ehrlich ascites tumor cells. Total nuclear RNA was also hybridized to cDNA transcribed from polysomal poly(A)-containing mRNA up to an rot of 3,000 M . s. It was found that all classes of the polysomal poly(A)-containing mRNA sequences were also present in the nucleus, although the distribution varied. About 2% of the total nuclear RNA sequences were expressed as total polysomal poly(A)-containing mRNA. We also report that the total percentage of the haploid mouse genome transcribed in Ehrlich cells is significantly higher than that found in other mouse cells previously examined for poly(A)-containing mRNA sequence complexity.  相似文献   

16.
17.
Target organ regulation of substance P in sympathetic neurons in culture   总被引:30,自引:0,他引:30  
The distribution of the mRNA for one of the two mouse protamines, the cysteine-rich, tyrosine-containing protamine (MP1), was examined in the polysomal and nonpolysomal compartments of total testis and purified populations of round and elongating spermatids using Northern blots. In postmitochondrial supernatants prepared from total testis, about 10-15% of MP1-mRNA sediments with the small polysomes. The nonpolysomal molecules of MP1-mRNA are homogeneous in size, about 580 bases, while the polysomal molecules are heterogeneous with a mode of about 450 bases. Digestion with RNase H and thermal chromatography on poly(U) Sepharose reveals that the difference in size of polysomal and nonpolysomal MP1-mRNA is due to a shortening of the poly(A) from about 160 to 30 bases. In round spermatids, essentially all of MP1-mRNA is 580 bases long and is in the nonpolysomal fraction. Elongating spermatids contain roughly equal proportions of the homogeneous, 580 base form in the nonpolysomal compartment, and the heterogeneous 450 base form solely in the polysomal compartment. These results indicate that mRNA for one of the mouse protamines is stored as an untranslated RNP in round spermatids, and that it is partially deadenylated when it is translated in elongating spermatids.  相似文献   

18.
19.
Poly(A)+RNA is synthesized during the first hours of pollen germination and is rapidly incorporated into polysomal structures. After a 2-h pulse with uracil-14C, 42% of the transcribed fraction of polysomal RNA is polyadenylated. Following 4 h of germination the amount of the newly-made poly(A)+RNA decreases steadily at the rate of about 14% per h, whereas that of rapidly-labelled poly(A)RNA continues to grow. Beginning 1 h of cultivation the ratio of poly(A)/poly(A)+RNA increases exponentially. Similarly as in non-polyadenylated mRNA the main portion of the synthesized polysomal poly(A)+RNA sediments at a rate of 4 to 14 S and its mean size decreases slightly with the time of labelling. RNA isolated from nuclei and cell wall containing pollen tube fraction differed from the polysomal one in higher apeoific radioactivity and the polyadenylated RNA exhibited higher size distribution. The comparison of the results with earlier observations suggests the involvement of poly(A)in mRNA translation in pollen tubes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号