首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chitosan beads were modified with glutaraldehyde and modified chitosan was investigated as matrix for hydrophobic interaction chromatography. The influence of temperature, type of salt and its ionic strength on the adsorption of -galactosidase was studied. -Galactosidase was found to bind in presence of high concentration of ammonium sulphate (3 M, w/v) and 90% of the bound enzyme was eluted with decreasing salt concentration in presence of 10% ethylene glycol. Attempt was made to purify -galactosidase from modified chitosan, -galactosidase showed 1.7-fold purification with 43.96% recovery of enzyme activity. The SDS–PAGE analysis of enzyme showed considerable purification and its molecular weight was found to be 63–64 kDa. Unlike other chromatographic matrices, the prepared chitosan beads were used five times. The results showed that purification and recovery of the enzyme did not change even when column size was increased.  相似文献   

2.
Hydrophobic interaction chromatography is employed to determine if calmodulin might associate with its target enzymes such as cyclic nucleotide phosphodiesterase and calcineurin through its Ca2+-induced hydrophobic binding region. The majority of protein in a bovine brain extract that binds to a calmodulin-Sepharose affinity column also is observed to bind in a metal ion-independent manner to phenyl-Sepharose through hydrophobic interactions. Cyclic nucleotide phosphodiesterase activity that is bound to phenyl-Sepharose can be resolved into two activity peaks; one peak of activity is eluted with low ionic strength buffer, while the second peak eluted with an ethylene glycol gradient. Calcineurin bound tightly to the phenyl-Sepharose column and could only be eluted with 8 M urea. Increasing ethylene glycol concentrations in the reaction mixture selectively inhibited the ability of calmodulin to stimulate phosphodiesterase activity, suggesting that hydrophobic interaction is required for activation. Comparison of the proteins which are bound to and eluted from phenyl- and calmodulin-Sepharose affinity columns indicates that chromatography involving calmodulin-Sepharose resembles hydrophobic interaction chromatography with charged ligands. In this type of interaction, hydrophobic binding either is reinforced by electrostatic attractions or opposed by electrostatic repulsions to create a degree of specificity in the binding of calmodulin to certain proteins with accessible hydrophobic regions.  相似文献   

3.
Spectrin is composed of two nonidentical subunits, with the 240-kDa subunit of nonerythroid spectrin (fodrin) able to bind calmodulin (CaM) Ca2+-dependently. It was found that in the presence of chaotropic salts this binding site was still expressed, although the subunits of fodrin were dissociated. This has been exploited for separating the fodrin subunits rapidly and quantitatively by affinity chromatography on calmodulin-Sepharose. When bovine fodrin was dissolved in 2 M KI + 1 mM Ca2+ and applied to CaM-Sepharose the beta subunit (235-kDa) passed through unretarded whereas the alpha subunit (240-kDa) bound and could be eluted with ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid. These subunits would reform the intact molecule when mixed and dialyzed.  相似文献   

4.
The ionic strength of the medium plays an important role in the structure and conformation of erythroid spectrin. The spectrin dimer is a flexible rod at physiological ionic strength. However, lower ionic strength results in elongation and rigidification (stiffening) of spectrin as shown earlier by electron microscopy and hydrodynamic studies. The ionic strength induced structural transition does not involve any specific secondary structural changes. In this article, we have used a combination of fluorescence spectroscopic approaches that include red edge excitation shift (REES), fluorescence quenching, time-resolved fluorescence measurements, and chemical modification of the spectrin tryptophans to assess the environment and dynamics of tryptophan residues of spectrin under different ionic strength conditions. Our results show that while REES, fluorescence anisotropy, lifetime, and chemical modification of spectrin tryptophans remain unaltered in low and high ionic strength conditions, quenching of tryptophan fluorescence by the aqueous quencher acrylamide (but not the hydrophobic quencher trichloroethanol) and resonance energy transfer to a dansyl-labeled fatty acid show differences in tryptophan environment. These results, which report tertiary structural changes in spectrin upon change in ionic strength, are relevant in understanding the molecular details underlying the conformational flexibility of spectrin.  相似文献   

5.
N R Burns  W B Gratzer 《Biochemistry》1985,24(12):3070-3074
The binding of calmodulin to red cell membrane cytoskeletons and to purified spectrin from red cells and bovine brain spectrin (fodrin) has been examined. Under physiological solvent conditions binding can be measured by ultracentrifugal pelleting assays. The membrane cytoskeletons contained a single class of binding sites, with a concentration similar to that of spectrin dimers and an association constant of 1.5 X 10(5) M-1. Binding is calcium dependent and is suppressed by the calmodulin inhibitor trifluoperazine. The binding showed a marked dependence on ionic strength, with a maximum at 0.05 M, and a steep dependence on pH, with a maximum at pH 6.5. It was unaffected by 5 mM magnesium. An azidocalmodulin derivative, under the conditions of our experiments, did not label the spectrin-containing complex, although it could be used to demonstrate binding to fodrin. Binding of calmodulin to spectrin tetramers and fodrin in solution could be demonstrated by a pelleting assay after addition of F-actin. Calculations (which are necessarily rough) suggest that at the free calcium concentration prevailing in a normal red cell about 1 in 20 of the calmodulin binding sites in spectrin will be occupied; this proportion will rise rapidly with increasing intracellular calcium. To determine whether inhibition of calmodulin binding to red cell proteins disturbs the control of cell shape, as has been suggested, calcium ions were removed from the cell by addition of an ionophore and of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid to the external medium. This did not affect the discoid shape. Trifluoperazine still induced stomatocytosis, exactly as in untreated cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The phosphorylation of spectrin polypeptide 2 is thought to be involved in the metabolically dependent regulation of red cell shape and deformability. Spectrin phosphorylation is not affected by cAMP. The reaction in isolated membranes resembles the cAMP-independent, salt-stimulated phosphorylation of an exogenous substrate, casein, by enzyme(s) present both in isolated membranes and cytoplasmic extracts. Spectrin kinase is selectively eluted from membranes by 0.5 M NaCl and co-fractionates with eluted casein kinase. Phosphorylation of band 3 in the membrane is inhibited by salt, but the band 3 kinase is otherwise indistinguishable operationally from spectrin kinase. The membrane-bound casein (spectrin) kinase is not eluted efficiently with spectrin at low ionic strength; about 80% of the activity is apparently bound at sites (perhaps on or near band 3) other than spectrin. Partitioning of casein kinase between cytoplasm and membrane is metabolically dependent; the proportion of casein kinase on the membrane can range from 25% to 75%, but for fresh cells is normally about 40%. Dephosphorylation of phosphorylated spectrin has not been studied intensively. Slow release of 32Pi from [32P] spectrin on the membrane can be demonstrated, but phosphatase activity measured against solubilized [32P] spectrin is concentrated in the cytoplasm. The crude cytoplasmic phosphospectrin phosphatase is inhibited by various anions – notably, ATP and 2,3-DPG at physiological concentrations. Regulation of spectrin phosphorylation in intact cells has not been studied. We speculate that spectrin phosphorylation state may be regulated (1) by metabolic intermediates and other internal chemical signals that modulate kinase and phosphatase activities per se or determine their intracellular localization and (2) by membrane deformation that alters enzyme–spectrin interaction locally. Progress in the isolation and characterization of spectrin kinase and phosphospectrin phosphatase should lead to the resolution of major questions raised by previous work: the relationships between membrane-bound and cytoplasmic forms of the enzymes, the nature of their physical interactions with the membrane, and the regulation of their activities in defined cell-free systems.  相似文献   

7.
In experiments designed to determine the thermal stability and bonding strength of a natural nucleoprotein structure, the loss of birefringence as a function of time and temperature was investigated for both mammalian and nonmammalian sperm nuclei. At a constant temperature, this reaction was found to be first order for both types over a range of temperatures. The methods of chemical kinetics applied to results of these reactions, called birefringence melting reactions, produced values for the enthalpy and entropy of activation in the reactions, which gave some indication of the strength of binding in the nucleoprotein structure; and these results, plus those on the influence of chemicals on the structure, were consistent with the molecular structures which have been proposed by others for the nucleoprotein complex of sperm nuclei. For both bull and human sperm in ethylene glycol, the rate-limiting step in the melting reactions appeared to be the breakage of disulfide bonds. For squid sperm in ethylene glycol, and bull or squid sperm in ethylene glycol plus β-mercaptoethanol, the identity of this step was more ambiguous, but a possibility consistent with these and other results would be a cooperative breakage of ionic bonds.  相似文献   

8.
Polyamidoamine dendrimers having poly(ethylene glycol) grafts were designed as a novel drug carrier which possesses an interior for the encapsulation of drugs and a biocompatible surface. Poly(ethylene glycol) monomethyl ether with the average molecular weight of 550 or 2000 was combined to essentially every chain end of the dendrimer of the third or fourth generation via urethane bond. The poly(ethylene glycol)-attached dendrimers encapsulating anticancer drugs, adriamycin and methotrexate, were prepared by extraction with chloroform from mixtures of the poly(ethylene glycol)-attached dendrimers and varying amounts of the drugs. Their ability to encapsulate these drugs increased with increasing dendrimer generation and chain length of poly(ethylene glycol) grafts. Among the poly(ethylene glycol)-attached dendrimers prepared, the highest ability was achieved by the dendrimer of the fourth generation having the poly(ethylene glycol) grafts with the average molecular weight of 2000, which could retain 6.5 adriamycin molecules or 26 methotrexate molecules/dendrimer molecule. The methotrexate-loaded poly(ethylene glycol)-attached dendrimers released the drug slowly in an aqueous solution of low ionic strength. However, in isotonic solutions, methotrexate and adriamycin were readily released from the poly(ethylene glycol)-attached dendrimers.  相似文献   

9.
We attached paraformaldehyde-fixed human erythrocyte ghosts to coated coverslips and sheared them to expose the cytoskeleton. Quick-freeze, deep-etch, rotary-replication, or tannic acid/osmium fixation and plastic embedding revealed the cytoskeleton as a dense network of intersecting straight filaments. Previous negative stain studies on spread skeletons found 5-6 spectrin tetramers intersecting at each actin oligomer, with an estimated 250 such intersections/microns 2 of membrane. In contrast, we found 3-4 filaments at each intersection and approximately 400 intersections/microns 2 of membrane. Immunogold labeling verified that the filaments were spectrin, but their lengths (29-37 nm) were approximately one-third that of extended spectrin dimers. The length and diameter of the filaments were sufficient to accommodate spectrin dimers, but not spectrin tetramers. Our results suggest that, in situ, spectrin dimers may associate as hexamers and octamers, rather than tetramers. We present several explanations that can reconcile our observations on intact cytoskeletons with previous reports on spread material. Extracting sheared ghosts with solutions of low ionic strength removed the cytoskeleton to reveal projections from the cytoplasmic surface of the membrane. These projections contained band 3, as shown by immunogold labeling, and they aggregated to a similar extent as intramembrane particles (IMP) when the cytoskeleton was removed, suggesting a direct relationship between these structures. Quantification indicated a stoichiometry of 2 IMP for each cytoplasmic projection. Cytoplasmic projections presumably contain other proteins besides band 3 since further treatment with high ionic strength solutions extracts peripheral proteins and reduces the diameter of projections by approximately 3 nm.  相似文献   

10.
Low ionic strength extraction (37 degrees C, 30 min) of ghosts from PK-deficient erythrocytes provided crude spectrin extract. No significant differences in the extract composition compared to normal donors were observed. The reticulocyte-dependent spectrin extractability was found among the subjects with PK-deficiency anemia. Likewise ATP-depletion affects spectrin extractability and also leads to the adsorption of cytoplasmic protein MW 50,000 to the reticulocyte membrane. The measurement of membrane fluidity using the fluorescence probe DPH did not reveal significant alterations in the moiety of integral membrane constituents.  相似文献   

11.
When calf rennet containing approximately 15% pepsin was applied to a Cibacron Blue agarose column at pH 5.5 in a low salt medium, pepsin passed through unadsorbed while chymosin was bound to the gel in the column. After washing the column, the bound chymosin was eluted with 1.7 M NaCl or 50% (v/v) aqueous ethylene glycol. The salt eluate was analyzed and found to contain greater than 97% pure chymosin. The fraction that passed through unadsorbed was found to contain greater than 96% pure pepsin. Thus a complete separation of chymosin and pepsin was effected by this technique without having to destroy either enzyme. Both enzymes are highly negatively charged at pH 5.5 but the separation does not arise from anion exchange since the gel functions as a cation exchanger. The separation appears to result from a combination of hydrophobic and electrostatic interactions of chymosin with Blue agarose. It is suggested that the enhanced affinity of chymosin to the Blue gel over pepsin may arise from topographically specified interaction between chymosin and the blue chromophore. Differential surface hydrophobicity may also play a key role, since in the presence of 0.7 M Na2SO4 the same behavior as at low ionic strength is observed.  相似文献   

12.
When calf rennet containing ~ 15% pepsin was applied to a Cibacron Blue agarose column at pH 5.5 in a low salt medium, pepsin passed through unadsorhed while chymosin was bound to the gel in the column. After washing the column, the bound chymosin was eluted with 1.7 M NaCl or 50% (v/v) aqueous ethylene glycol. The salt eluate was analyzed and found to contain > 97% pure chymosin. The fraction that passed through unadsorbed was found to contain > 96% pure pepsin. Thus a complete separation of chymosin and pepsin was effected by this technique without having to destroy either enzvme. Both enzymes are highly negatively charged at pH 5.5 but the separation does not arise from anion exchange since the gel functions as a cation exchanger. The separation appears to result from a combination of hydrophobic and electrostatic interactions of chymosin with Blue agarose. It is suggested that the enhanced affinity of chymosin to the Blue gel over pepsin may arise from topographically specified interaction between chymosin and the blue chromophore. Differential surface hydrophobicity may also play a key role, since in the presence of 0.7 M Na2SO4 the same behavior as at low ionic strength is observed.  相似文献   

13.
The effect of ethylene glycol on the contractile properties of skeletal muscles was studied using glycerinated rabbit psoas muscle fibers. Measurements were made at an ionic strength of 0.2 M, pH 7.0, and at 10 degrees C. Ethylene glycol reversibly reduced isometric tension, active stiffness, the tension-to-stiffness ratio, and the shortening velocity at zero load (Vo) in a dose-dependent fashion. Ethylene glycol also reduced the Ca sensitivity for contraction. The extent of the reduction in Vo by ethylene glycol was much larger than that in the actomyosin ATPase activity reported by Travers and Hillaire (Eur. J. Biochem. 98, 293-299 [1979]). Although ethylene glycol reduced tension and Vo, the MgATP concentration dependence of these two quantities was almost unaffected. These results suggest that in the presence of ethylene glycol, force produced by crossbridges in the principal force-producing state is reduced and/or the relative population of the attached crossbridges in the low-force state increases. The results also suggest that the reduction in Vo by ethylene glycol is caused not only by a reduction in the actomyosin ATPase activity but also by a reduction in the shortening distance per mole of ATP split.  相似文献   

14.
125I-labelled human C1q was found to bind to human spectrin. Scatchard plots for the binding process were non-linear, indicating the possible presence of multiple classes of binding sites for C1q on spectrin. The binding was ionic-strength-dependent; the extent of binding decreased with increasing ionic strength. Chemical modification of arginine and histidine residues on C1q as well as pretreatment of C1q at pH 4.45 or at 56 degrees C reduced its spectrin binding activity. The amount of 125I-labelled C1q bound to immune complexes was reduced by the presence of spectrin. Spectrin was also able to deplete the complement haemolytic activity of human serum in a dose-dependent manner.  相似文献   

15.
Hemoglobin and the low molecular weight proteins 8 and 9 are extracted from ghosts during low ionic washing after the hypotonic hemolysis of erythrocytes. Furthermore, a loss of the proteins 4.5 and 7 was observed. The protein patterns of ghosts after isotonic hemolysis by freezing and thawing resemble the ghost protein patterns after hypotonic hemolysis and incomplete deprivation of Hb. Many if not all membrane proteins are eluted by repeated incubations of the ghosts in solutions of low ionic strength in the presence of EDTA. The spectrins, the proteins 5, 4.5, 7 and residual Hb are extracted preferentially. A selective extraction of the spectrins and the protein 5 is not detectable under these conditions. Often the spectrin bands are subdivided following low ionic incubation.  相似文献   

16.
A specific association between spectrin and the inner surface of the human erythrocyte membrane has been examined by measuring the binding of purified [32P]spectrin to inside out, spectrin-depleted vesicles and to right side out ghost vesicles. Spectrin was labeled by incubating erythrocytes with 32Pi, and eluted from the ghost membranes by extraction in 0.3 mM NaPO4, pH 7.6. [32P]Spectrin was separated from actin and other proteins and isolated in a nonaggregated state as a So20,w = 7 S (in 0.3 mM NaPO4) or So20,w = 8 S (in 20 mM KCl, 0.3 mM NaPO4) protein after sedimentation on linear sucrose gradients. Binding of [32P]spectrin to inverted vesicles devoid of spectrin and actin was at least 10-fold greater than to right side out membranes, and exhibited different properties. Association with inside out vesicles was slow, was decreased to the value for right side out vesicles at high pH, or after heating spectrin above 50 degrees prior to assay, and was saturable with increasing levels of spectrin. Binding to everted vesicles was rapid, unaffected by pH or by heating spectrin, and rose linearly with the concentration of spectrin. Scatchard plots of binding to inverted vesicles were linear at pH 7.6, with a KD of 45 microng/ml, while at pH 6.6, plots were curvilinear and consistent with two types of interactions with a KD of 4 and 19 microng/ml, respectively. The maximal binding capacity at both pH values was about 200 microng of spectrin/mg of membrane protein. Unlabeled spectrin competed for binding with 50% displacement at 27 microng/ml. [32P]Spectrin dissociated and associated with inverted vesicles with an identical dependence on ionic strength as observed for elution of native spectrin from ghosts. MgCl2, CaCl2 (1 to 4 mM) and EDTA (0.5 to 1 mM) had little effect on binding in the presence of 20 mM KCl, while at low ionic strength, MgCl2 (1 mM) increased binding and inhibited dissociation to the same extent as 10 to 20 mM KCl. Binding was abolished by pretreatment of vesicles with 0.1 M acetic acid, or with 0.1 microng/ml of trypsin. The periodic acid-Schiff-staining bands were unaffected by trypsin digestion which destroyed binding; mild digestion, which decreased binding only 50%, converted Band 3 almost completely to a membrane-bound 50,000-dalton fragment resistant to further proteolysis. These experiments suggest that attachment of spectrin to the cytoplasmic surface of the membrane results from a selective protein-protein interaction which is independent of erythrocyte actin. A direct role of the major sialoglycoprotein or Band 3 as a membrane binding site appears unlikely.  相似文献   

17.
The influence of hetero-association on the precipitation of proteins by poly(ethylene glycol) was investigated by comparing the precipitation of binary mixtures to that of the individual proteins. Pronounced enhancement of precipitation was observed for several mixtures, with maximum effect at low ionic strength at a pH between the pI's. Measurements of sedimentation velocity and/or fluorescence polarization of dansyl-labeled components revealed that conditions fostering precipitation of a given mixture also enhanced the formation of soluble hetero-complexes in the absence of poly(ethylene glycol). Conversely, enhanced precipitation was not observed under conditions where complexes were shown to be absent. Poly(ethylene glycol) does not appear to influence such interactions and thus can be used to detect the presence of hetero-complexes in a binary mixture whose precipitation curve is shifted relative to those of its components.  相似文献   

18.
Tuned (molecularly imprinted) and nontuned, with respect to lysine amino acid, carboxylic heteroreticular sorbents based on methacrylic acid and ethylene glycol dimethacrylate, were synthesized. Study of sorption of lysine within wide pH range and ionic strength indicated significant dissimilarities in amino acid sorption by tuned sorbents, which were expressed as an increase in the contribution of nonionic interaction, and resulted in a decrease in the ionic strength effect on the sorption capacity, as well as an increase in amino acid sorption selectivity.  相似文献   

19.
The polymerization of pyrene-labelled skeletal muscle actin has been monitored in the presence of chromatographically purified spectrin dimers and tetramers. A small but consistent effect of spectrin binding on the critical concentration was observed for actin polymerized in the presence of 1 mM MgCl2. These data were analysed using the principle of linked functions. Spectrin binds exclusively to the filamentous form of actin, and thereby stabilizes F-actin with respect to the G-form. The decrease in the critical concentration for actin polymerization, in the presence of spectrin, has been shown to be consistent with an equilibrium constant for the binding of spectrin to individual promoters within F-actin of approximately 8 X 10(5) M-1 at 23 degrees C, and an ionic strength of 7 mM.  相似文献   

20.
A strictly anaerobic, homoacetogenic bacterium was enriched and isolated from anoxic sewage sludge with polyethylene glycol (PEG) 1000 as sole source of carbon and energy, and was assigned to the genus Acetobacterium on the basis of morphological and physiological properties. The new isolate fermented ethylene glycol and PEG's with molecular masses of 106 to 1000 to acetate and small amounts of ethanol. The PEG-degrading activity was not destroyed by proteinase K treatment of whole cells. In cell-free extracts, a diol dehydratase and a PEG-degrading (ether-cleaving) enzyme activity were detected which both formed acetaldehyde as reaction product. The diol dehydratase enzyme was oxygen-sensitive and was stimulated 10–14 fold by added adenosylcobalamine. This enzyme was found mainly in the cytoplasmic fraction (65%) and to some extent (35%) in the membrane fraction. The ether-cleaving enzyme activity reacted with PEG's of molecular masses of 106 to more than 20000. The enzyme was measurable optimally in buffers of high ionic strength (4.0), was extremely oxygen-sensitive, and was inhibited by various corrinoids (adenosylcobalamine, cyanocobalamine, hydroxocobalamine, methylcobalamine). This enzyme was found exclusively in the cytoplasmic fraction. It is concluded that PEG is degraded by this bacterium inside the cytoplasm by a hydroxyl shift reaction, analogous to a diol dehydratase reaction, to form an unstable hemiacetal intermediate. The name polyethylene glycol acetaldehyde lyase is suggested for the responsible enzyme.Abbreviations EG ethylene glycol - DiEG diethylene glycol - TriEG triethylene glycol - TeEG tetraethylene glycol - PEG polyethylene glycol (molecular mass indicated)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号