首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Summary We have isolated and characterized a new class of p-fluorophenylalanine (FPA)-resistant mutant in Aspergillus nidulans using a phenA strain as the wild type, by optimizing the conditions of growth. All four spontaneous mutants selected on a medium containing FPA were found to be recessive to their wild-type alleles in heterozygous diploids. Complementation analyses and linkage data showed that they were allelic and mapped at a single locus (fpaU) in the facA-riboD interval on the right arm of linkage group V. Partial purification and characterization of Phe-tRNA synthetase from wild-type and mutant strains revealed that the mutant enzyme had a greatly reduced ability to activate the analogue. It is suggested that mutation in the fpaU gene brings about a structural alteration in Phe-tRNA synthetase.Abbreviations FPA DL-p-fluorophenylalanine - phenA auxotroph of phenylalanine - Phe-tRNA synthetase phenylalanyl-transfer ribonucleic acid synthetase Current address: Department of Biological Sciences (M/C 066) The University of Illinois at Chicago, Box 4348, Chicago, IL 60680, USA  相似文献   

2.
Summary An allele (oliC31) of the A. nidulans oliC gene has been cloned using homology with the equivalent gene from N. crassa. OliC31 codes for an oligomycin-resistant, triethyltin-hypersensitive form of subunit 9 of the mitochondrial ATP synthase complex. Direct selection for oligomycin-resistance was possible following transformation of A. nidulans with the oliC31 gene. The phenotypes of transformants cultured in the presence of oligomycin were indicative of the position of integration of the transforming plasmid within the genome. Subsequent recombination events involving the integrated oliC31 gene were also apparent from altered levels of resistance to oligomycin or triethyltin. This gene should prove useful as a marker for transformation of strains lacking auxotrophic lesions and in gene replacement or disruption experiments.  相似文献   

3.
Polarity-defective mutants of Aspergillus nidulans   总被引:4,自引:0,他引:4  
  相似文献   

4.
5.
Summary In Aspergillus nidulans expression of the acetamidase structural gene, amdS, is under the control of at least four regulatory genes including the trans-acting amdA regulatory gene. A cis-acting mutation (amdI66) consisting of an 18 by duplication in the 5 region of the amdS gene results in very high levels of acetamidase activity but only in strains carrying semi-dominant mutations in the amdA gene. In selecting for increased amdS expression in an amdI66 amdA strain, an A. nidulans strain with a mutation in the 5 region of the amdS gene was isolated. The nucleotide sequence was determined of the region containing the mutation, designated amdI666. The mutant strain carries three tandem copies of the 18 by sequence that is duplicated in the amdI66 mutation. Thus, from a strain carrying a duplication of an apparent regulatory protein binding site with little effect on gene expression, a strain has been derived that carries a triplication of the site with consequent major effects on regulation. The multiple copies of regulatory sites present in many genes may have been generated by a similar mechanism.  相似文献   

6.
We have previously identified genes and proteins involved in the fungal response to the Streptomyces-produced antibiotics, bafilomycin B1 and concanamycin A, known inhibitors of V-ATPases. Using mRNA differential display we identified an Aspergillus nidulans gene with 30-fold up-regulated expression in the presence of bafilomycin. This gene, here denoted phiA, and its gene product, were further characterized by targeted gene disruption and immunohistochemistry. Phenotypically, the phiA mutation resulted in reduced growth and severely reduced sporulation. The abnormality could be traced to the phialides, which divided several times instead of forming a single flask-shaped cell. The importance of phiA for phialide and conidium development was supported by immunohistochemistry experiments that showed the protein to be mainly present in these two cell types. Attempts to relate phiA to inhibition of V-ATPases did not result in unambiguous conclusions, but suggest the possibility that changed expression of phiA is correlated with growth arrest caused by inhibited V-ATPases.  相似文献   

7.
In the ascomycetous fungus Aspergillus nidulans, the expression of two inducible, contiguous or closely linked genes (qutB and qutC) which encode enzymes for quinate breakdown to protocatechuate, appears to be controlled by the product of a tightly linked third gene (qutA). The qut gene cluster locates on chromosome VIII. The catalytic steps required for this conversion are dehydrogenase, dehydroquinase, and dehydratase, and these activities are induced by the presence of quinate in a similar manner. The dehydroquinase enzyme has been purified and shown to be multimeric, consisting of 20–22 identical subunits of approximately 10,000 MW. The enzyme has a pI value of 5.84, a K m of 5×10–4 m, and an amino acid composition that lacks tryptophan and cysteine. The enzyme also cross-reacts with rabbit antibodies raised against Neurospora crassa catabolic dehydroquinase.This work was supported in part by European Molecular Biology Organisation grants to J.R.K. and A.R.H. and by National Institutes of Health Grant GM23051 to N.H.G.  相似文献   

8.
Aspergillus nidulans PW1 produces an extracellular carboxylesterase activity that acts on several lipid esters when cultured in liquid media containing olive oil as a carbon source. The enzyme was purified by gel filtration and ion exchange chromatography. It has an apparent MW and pI of 37 kDa and 4.5, respectively. The enzyme efficiently hydrolyzed all assayed glycerides, but showed preference toward short- and medium-length chain fatty acid esters. Maximum activity was obtained at pH 8.5 at 40°C. The enzyme retained activity after incubation at pHs ranging from 8 to11 for 12 h at 37°C and 6 to 8 for 24 h at 37°C. It retained 80% of its activity after incubation at 30 to 70°C for 30 min and lost 50% of its activity after incubation for 15 min at 80°C. Noticeable activation of the enzyme is observed when Fe2+ ion is present at a concentration of 1 mM. Inhibition of the enzyme is observed in the presence of Cu2+, Fe3+, Hg2+, and Zn2+ ions. Even though the enzyme showed strong carboxylesterase activity, the deduced N-terminal amino acid sequence of the purified protein corresponded to the protease encoded by prtA gene.  相似文献   

9.
10.
The regulation of the syntheses of two arabinan-degrading extracellular enzymes and several intracellular l-arabinose catabolic enzymes was examined in wild-type and carbon catabolite derepressed mutants of Aspergillus nidulans. α-l-Arabinofuranosidase B, endoarabinase, l-arabinose reductase, l-arabitol dehydrogenase, xylitol dehydrogenase, and l-xylulose reductase were all inducible to varying degrees by l-arabinose and l-arabitol and subject to carbon catabolite repression by d-glucose. With the exception of l-xylulose reductase, all were clearly under the control of creA, a negative-acting wide domain regulatory gene mediating carbon catabolite repression. Measurements of intracellular enzyme activities and of intracellular concentrations of arabitol and xylitol in mycelia grown on d-glucose in the presence of inducer indicated that carbon catabolite repression diminishes, but does not prevent uptake of inducer. Mutations in creA resulted in an apparently, in some instances very marked, elevated inducibility, perhaps reflecting an element of “self” catabolite repression by the inducing substrate. creA mutations also resulted in carbon catabolite derepression to varying degrees. The regulatory effects of a mutation in creB and in creC, two genes whose roles are unclear, but likely to be indirect, were, when observable, more modest. As with previous data showing the effect of creA mutations on structural gene expression, there were striking instances of phenotypic variation amongst creA mutant alleles and this variation followed no discernible pattern, i.e. it was non-hierarchical. This further supports molecular data obtained elsewhere, indicating a direct role for creA in regulating structural gene expression, and extends the range of activities under creA control.  相似文献   

11.
Summary Another laboratory previously reported that the vast majority of mitotic recombinants in chromosome I disomics of Aspergillus nidulans arise from double exchange events involving the centromeric region and a far distal, possibly telomeric, region. This conclusion was based on the assumption that the camC gene is located in a position far distal to the centromere on the left arm of chromosome. I. As a left arm location for camC distal to the centromere was possibly in conflict with mapping data obtained in the context of an unrelated project, camC was partially mapped along with three other previously unlocated chromosome I genes, davA, ornD and uapA. The data presented here indicate that camC is located in a position far distal to the centromere but on the right arm of chromosome I, a conclusion also supported by the previous data. The positioning of uapA and camC in far distal locations on the right arm of chromosome I indicates the existence of a vast, otherwise nearly unmapped region on this chromosome arm.  相似文献   

12.
Summary The core histone gene family ofAspergillus nidulans was characterized. The H2A, H2B and H3 genes are unique in theA. nidulans genome. In contrast there are two H4 genes, H4.1 and H4.2. As previously reported for the H2A gene (May and Morris 1987) introns also interrupt the other core histone genes. The H2B gene, like the H2A gene, is interrupted by three introns, the H3 and H4.1 gene are each interrupted by two introns and the H4.2 gene contains one intron. The position of the single intron in H4.2 is the same as that the first intron of the H4.1 gene. The H2A and H2B genes are arranged as a gene pair separated by approximately 600 by and are divergently transcribed. The H3 and H4.1 genes are similarly arranged and are separated by approximately 800 bp. The H4.2 gene is not closely linked to either the H2A-H2B or H3-H4.1 gene pairs. Using pulse field gel electrophoresis an electrophoretic karyotype was established forA. nidulans. This karyotype was used to assign the H3–H4.1 gene pair and the H4.2 gene to linkage group VIII and the H2A–H2B gene pair to either linkage group III or VI. The abundance of each of the histone messenger RNAs was determined to be cell cycle regulated but the abundance of the H4.2 mRNA appears to be regulated differently from the others.  相似文献   

13.
Summary Acetate inducible genes of Aspergillus nidulans were cloned via differential hybridization to cDNA probes. Using transformation of mutant strains the genes were identified as facA (acetyl-Coenzyme A synthetase) and acuE (malate synthase). The levels of RNA encoded by these genes were shown to be acetate inducible and subject to carbon catabolite repression. Induction is abolished in a facB mutant and carbon catabolite repression is relieved in a creA mutant.  相似文献   

14.
Summary In the fungus Aspergillus nidulans the levels of a number of enzymes whose location is at least in part extracellular (e.g. acid phosphatase, alkaline phosphatase, phosphodiesterase) and of certain permeases (e.g. that for -amino-n-butyrate) are controlled by the pH of the growth medium. For example, at acidic pH, levels of acid phosphatase are high and those of alkaline phosphatase are low whereas at alkaline pH the reverse is true. Mutations in five genes, palA, B, C, E and F, mimic the effects of growth at acid pH whereas mutations in pacC mimic the effects of growth at alkaline pH. palA, B, C, E and F mutations result in an intracellular pH (pHin) which is more alkaline than that of the wild type whereas pacC mutations result in a pHin more acidic than that of the wild type. This indicates that these mutations exert their primary effects on the regulation of gene expression by pH rather than on the pH homeostatic mechanism but that the expression of at least some component(s) of the pH homeostatic mechanism is subject to the pH regulatory system. It is suggested that pacC might be a wide domain regulatory gene whose product acts positively in some cases (e.g. acid phosphatase) and negatively in others (e.g. alkaline phosphatase). The products of palA, B, C, E and F are proposed to be involved in a metabolic pathway leading to synthesis of an effector molecule able to prevent the (positive and negative) action of the pacC product.These genes are, to our knowledge, the first examples of genes involved in the regulation of extracellular enzyme and permease synthesis by the pH of the growth medium to be described in any organism.  相似文献   

15.
Summary We have constructed an intragenic map for the Aspergillus nidulans brlA gene, mutants in which are distinguishable by visual criteria only. Most of the leaky phenotype mutants map near the right (3) end. The gene shows distinct recombinational polarity consistent with recombination initiation at the promoter (centromereproximal) end of the gene. brlA12 and brlA20 mutants gave abnormal DNA restriction patterns consistent with the III; VIII and VI; VIII translocations, respectively, determined by haploidization.  相似文献   

16.
Summary The gamma-amino-n-butyrate transaminase gene (gatA) of Aspergillus nidulans is one of several genes under positive control by the regulatory gene amdR (also called intA). The gatA gene has been cloned from a cosmid library by complementation of a gatA mutation. The sequence of a 2.6 kb genomic fragment containing gatA has been determined. An open reading frame of 1497 bp within this sequences is interrupted by three putative introns and predicts a protein of 55 kDa. Northern analysis confirms control of gatA RNA levels by amdR and also indicates that gatA is not strongly regulated by areA-mediated nitrogen metabolite repression. A. nidulans transformants containing multiple copies of a plasmid carrying an 88 bp fragment from the 5 untranscribed region of gatA grew poorly on substrates whose utilisation is dependent on genes controlled by amdR. This indicated titration of limiting amounts of the amdR gene product by this 88 bp fragment. Comparison of this sequence with the 5 region of the coregulated gene, amdS, reveals probable sites of action for the amdR protein.  相似文献   

17.
18.
Anaplerotic fixation of carbon dioxide by the fungus Aspergillus nidulans when grown under carbon-limited conditions was mediated by pyruvate carboxylase and a phosphoenol pyruvate (PEP)-metabolising enzyme which has been tentatively designated as PEP carboxylase. The activities of both enzymes were growth rate dependent and measurements of H14CO3 incorporation by growing mycelium indicated that they were responsible for almost all the assimilated carbon dioxide. In carbon-limited chemostats, the maximum rate of bicarbonate assimilation occurred at a dilution rate of 0.11 h–1, equivalent to 1/2 max. The affinity of the pyruvate carboxylase for bicarbonate was twice that of the PEP carboxylase under the conditons of growth used. The effect of changing the bicarbonate concentration in carbon-limited chemostats was substantial: increasing the HCO 3 concentration over the range 0.7–2.8 mM enhanced biomass synthesis by 22%. Over-shoots in bicarbonate assimilation and carboxylase activity occurred when steady state chemostat cultures were subjected to a step down in dilution rate.  相似文献   

19.
Summary Of five amidohydrolase activities subject to nitrogen metabolite repression in Aspergillus nidulans, l-asparaginase shows clearest evidence of also being subject to repression by atmospheric oxygen. Such oxygen repressibility is only evident under nitrogen metabolite derepressed conditions. Asparaginase levels are also considerably elevated by areA300, an altered function allele of the positive acting wide domain regulatory gene areA mediating nitrogen metabolite repression and are drastically reduced by loss of function mutations in areA. A. nidulans has two l-asparaginase enzymes and it has been shown by the use of appropriate mutants that these regulatory effects are exerted on the expression of that specified by the ahrA gene but probably not that specified by the apnA gene. Present address: (until 25 August, 1988) Department of Genetics, University of Georgia, Athens, GA 30602, USA  相似文献   

20.
The regulation of formation of the single intracellular beta-galactosidase activity of Aspergillus nidulans was investigated. beta-Galactosidase was not formed during growth on glucose or glycerol, but was rapidly induced during growth on lactose or D-galactose. L-Arabinose, and -- with lower efficacy -- D-xylose also induced beta-galactosidase activity. Addition of glucose to cultures growing on lactose led to a rapid decrease in beta-galactosidase activity. In contrast, in cultures growing on D-galactose, addition of glucose decreased the activity of beta-galactosidase only slightly. Glucose inhibited the uptake of lactose, but not of D-galactose, and required the carbon catabolite repressor CreA for this. In addition, CreA also repressed the formation of basal levels of beta-galactosidase and partially interfered with the induction of beta-galactosidase by D-galactose, L-arabinose, and D-xylose. D-Galactose phosphorylation was not necessary for beta-galactosidase induction, since induction by D-galactose occurred in an A. nidulans mutant defective in galactose kinase, and by the non-metabolizable D-galactose analogue fucose in the wild-type strain. Interestingly, a mutant in galactose-1-phosphate uridylyl transferase produced beta-galactosidase at a low, constitutive level even on glucose and glycerol and was no longer inducible by D-galactose, whereas it was still inducible by L-arabinose. We conclude that biosynthesis of the intracellular beta-galactosidase of A. nidulans is regulated by CreA, partially repressed by galactose-1-phosphate uridylyl transferase, and induced by D-galactose and L-arabinose in independent ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号