首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrix metalloproteinases (MMPs) play a crucial role in tumor cell invasion and metastasis. Expression of MMP-1 has been reported as a prognostic predictor of recurrence in human chondrosarcoma, and studies using human chondrosarcoma cell lines indicate that MMP-1 expression levels correlate with in vitro invasiveness. These observations suggest that MMP-1 activity has a central role in cell egress from the primary tumor at an early step in the metastatic cascade. In this study, siRNA was used to investigate whether knock down of the MMP-1 gene could be used to inhibit invasiveness in a human chondrosarcoma cell line. The inhibitory effect of siRNA on endogenous MMP-1 gene expression and protein synthesis was demonstrated via RT-PCR, Northern blotting, Western blotting, collagenase activity assay, and an in vitro cell migration assay. The siRNA inhibited MMP-1 expression specifically, since it did not affect the expression of endogenous glyceraldehyde phosphate dehydrogenase (GAPDH) nor other collagenases. Most importantly, the siRNA mediated reduction in MMP-1 expression correlated with a decreased ability of chondrosarcoma cells to invade a Type I collagen matrix. The reduction of invasive behavior demonstrated by human chondrosarcoma cells transfected with MMP-1 siRNA and the specificity of this inhibition supports the hypothesis that this metalloproteinase molecule is involved in initiation of chondrosarcoma metastasis.  相似文献   

2.
Homo sapiens longevity assurance homologue 2 of yeast LAG1 (LASS2), also known as tumor metastasis suppressor gene 1 (TMSG1), is a newly found tumor metastasis suppressor gene in 1999. Preliminary studies showed that it not only suppressed tumor growth but also closely related to tumor metastasis, however, its molecular mechanisms is still unclear. There have been reported that protein encoded by LASS2/TMSG-1 could directly interact with the C subunit of Vacuolar ATPase (V-ATPase), which suggested that LASS2/TMSG1 might inhibit the invasion and metastasis through regulating the function of V-ATPase. Thus, in this study, we explored the effect of small interference RNA (siRNA) targeting LASS2/TMSG1 on the invasion of human prostate carcinoma cell line PC-3M-2B4 and its molecular mechanisms associated with the V-ATPase. Real-time fluorogentic quantitative PCR (RFQ-PCR) and Western blot revealed dramatic reduction of 84.5% and 60% in the levels of LASS2/TMSG1 mRNA and protein after transfection of siRNA in PC-3M-2B4 cells. The V-ATPase activity and extracellular hydrogen ion concentration were significantly increased in 2B4 cells transfected with the LASS2/TMSG1-siRNA compared with the controls. The activity of secreted MMP-2 was up-regulated in LASS2/TMSG1-siRNA treated cells compared with the controls; and the capacity for migration and invasion in LASS2/TMSG1-siRNA treated cells was significantly higher than the controls. Thus, we concluded that silencing of LASS2/TMSG1 may promote invasion of prostate cancer cell in vitro through increase of V-ATPase activity and extracellular hydrogen ion concentration and in turn the activation of secreted MMP-2.  相似文献   

3.
The ATP-gated P2X7 has been shown to play an important role in invasiveness and metastasis of some tumors. However, the possible links and underlying mechanisms between P2X7 and prostate cancer have not been elucidated. Here, we demonstrated that P2X7 was highly expressed in some prostate cancer cells. Down-regulation of P2X7 by siRNA significantly attenuated ATP- or BzATP-driven migration and invasion of prostate cancer cells in vitro, and inhibited tumor invasiveness and metastases in nude mice. In addition, silencing of P2X7 remarkably attenuated ATP- or BzATP- driven expression changes of EMT/invasion-related genes Snail, E-cadherin, Claudin-1, IL-8 and MMP-3, and weakened the phosphorylation of PI3K/AKT and ERK1/2 in vitro. Similar effects were observed in nude mice. These data indicate that P2X7 stimulates cell invasion and metastasis in prostate cancer cells via some EMT/invasion-related genes, as well as PI3K/AKT and ERK1/2 signaling pathways. P2X7 could be a promising therapeutic target for prostate cancer.  相似文献   

4.
There currently exists no satisfactory treatment for patients with prostate cancer with local evolution and distant metastasis. Previous studies have confirmed the importance of CC chemokine receptor 7 (CCR7) in the invasion and metastasis of prostate cancer. And increasing evidence prove that Notch1 can play diametrically opposite roles in the development and progression of different tumors. To demonstrate the correlation between CCR7 and Notch1, PC-3 cells were transfected with pcDNA3.1-CCR7 or CCR7 si-RNA, respectively. Then Western blot analysis was used to detect the expressions of Notch1, ERK, P38, JNK, NF-κB, MMP-9, and epithelial-mesenchymal transition (EMT)-related proteins. Moreover, matrigel invasion assays were performed to assess the migratory and invasive activities of PC-3 cells. PcDNA3.1-CCR7 increased the expression of Notch1, phospho-MAPK, phospho-P65, MMP-9, N-cadherin, and Snail in PC-3 cells, but decreased the expression of E-cadherin. PcDNA3.1-CCR7 also promoted the migration and invasion of PC-3 cells. However, CCR7 si-RNA reversed the effect of pcDNA3.1-CCR7 in PC-3 cells. And MAPK and NF-κB pathway inhibitors were used to testify that activation of Notch1 induces EMT through MAPK and NF-κB pathway. All these results indicate that upregulation of Notch1 by CCR7 can accelerate the evolution of EMT and develop the invasion and metastasis in prostate cancer cells by activating MAPK and NF-κB signaling pathways in prostate cancer cells, which provides a new molecular evidence for targeted therapy in metastatic prostate cancer.  相似文献   

5.
茹晓莉  张凡  郭睿  于春梅  王凯 《生物磁学》2013,(34):6630-6633,6714
目的:构建表达真核细胞起始因子-4E(eukaryoticinitiationfactor4E,eIF-4E)特异性siRNA的重组腺病毒载体,观察其对人卵巢癌细胞SKOV-3体外转移能力的影响。方法:应用基因重组技术将eIF.4EsiRNA序列构建于腺病毒载体pLP-Ade-X,经包装细胞包装后得到高滴度重组腺病毒pLP—Ade-4EsiRNA(psiE)。将腺病毒psiE感染SKOV.3细胞,用定量PCR进行elf.4E基因表达检测,然后应用transwell小室法观察对细胞侵袭和运动能力的影响,同时检测感染后细胞内VEGF、MMP-2、MMP-9蛋白表达。结果:病毒检测结果与预期相符,real—timePCR可检测到感染重组腺病毒psiE后SKOV.3细胞没有eIF-4E基因表达;病毒感染后transwell小室法检测到SKOV-3细胞的侵袭和运动能力均受到显著的抑制(均为P〈0.01);此外病毒感染的SKOV.3细胞中VEGF、MMP-2、MMP-9蛋白表达降低。结论:封闭eIF-4E基因表达对人卵巢癌细胞SKOV.3的侵袭和运动都有抑制作用,其作用机制可能与VEGF、MMP-2、MMP-9表达相关。  相似文献   

6.
PC-1在前列腺癌细胞中促进c-myc基因的表达   总被引:1,自引:0,他引:1  
前列腺癌相关基因PC-1(Prostate and colon gene1)是属于癌基因D52家族成员,具有促进前列腺癌细胞雄激素非依赖性生长的功能。为了研究PC-1发挥这种生物功能的分子机制,文章在PC-1高表达的LNCaP-pc-1及对照LNCaP-zero细胞中,利用RT-PCR和Western blotting等方法检测c-myc基因表达;提取两细胞胞质和胞核蛋白,利用Western blotting分析c-myc上游调节蛋白β-catenin变化;利用c-Myc蛋白抑制剂10058-F4作用前列腺癌细胞C4-2,Western blotting检测PC-1蛋白表达变化。发现PC-1促进c-myc基因表达,并促进β-catenin入核;c-Myc蛋白抑制剂10058-F4可抑制PC-1的表达。结果表明:PC-1在前列腺癌中促进c-myc基因的表达,并且这种促进作用可能是通过Wnt/β-catenin信号通路实现的。同时,PC-1与c-Myc蛋白间可相互促进,进一步促进前列腺癌细胞雄激素非依赖性生长。  相似文献   

7.
目的:研究孤儿核受体ERRα对前列腺癌细胞E-cadherin(上皮细胞钙粘蛋白)的表达水平和体内转移能力的影响。方法:利用慢病毒介导的sh RNA构建稳定下调ERRα表达的DU145-sh ERRα和PC-3M-sh ERRα前列腺癌细胞模型,同时用ERRα特异性抑制剂XCT790抑制其活性,并利用Western Blotting(免疫印迹)检测上皮细胞标志物E-cadherin的表达水平。将PC-3M-sh ERRα细胞和PC-3M-scramble对照细胞用荧光素酶标记后原位注射小鼠前列腺,8周以后通过体内成像系统检测原位瘤的形成及其体内转移情况。结果:基因沉默ERRα表达水平和用其特异性抑制剂XCT790处理DU145后,E-cadherin的表达水平明显降低。在PC-3M-sh ERRα细胞中,E-cadherin的表达水平明显低于对照组,同时由其构建的6只原位前列腺癌小鼠模型中没有发生转移,而由对照组细胞构建的7只原位前列腺癌小鼠模型中有4只发生了转移。结论:在前列腺癌细胞中下调ERRα的表达水平抑制其E-cadherin的表达和体内转移能力。  相似文献   

8.
单核细胞趋化蛋白-1(monocyte chemoattractant protein-1,MCP-1)是白色脂肪细胞分泌的炎症趋化刺激因子,属于趋化因子CC亚族,可促进肿瘤血管形成和细胞外基质降解,从而促进肿瘤细胞的浸润与转移。沉默MCP-1基因可显著抑制恶性肿瘤生长及转移,但其作用的分子机制尚不完全清楚。本研究应用小干扰RNA技术沉默人食管癌EC109细胞中MCP-1表达。细胞划痕试验显示,与对照组相比,沉默MCP-1基因可明显抑制食管癌EC109细胞迁移能力。Transwell 侵袭实验显示,沉默MCP-1基因后,EC109细胞侵袭能力降低。Western 印迹试验和RT-PCR试验揭示,沉默MCP-1基因后,细胞中MMP-7、MMP-9、TGF-β1及VEGF表达水平显著下降。研究结果提示,沉默MCP-1基因可通过抑制MMP-7、MMP-9、TGF-β1及VEGF表达,降低癌细胞迁移及侵袭能力。  相似文献   

9.
Aim: Typical features of human osteosarcoma are highly invasive and migratory capacities. Our study aimed to investigate the roles of glycogen synthase kinase 3β (GSK3β) in human osteosarcoma metastasis.Methods: GSK3β expressions in clinical osteosarcoma tissues with or without metastasis were examined by immunohistochemical staining. The expressions of GSK3β, p-GSK3βSer9, and p-GSK3βTyr216 in human osteoblast cells (hFOB1.19) and human osteosarcoma cells (MG63, SaOS-2, and U2-OS) were detected by Western blotting. The GSK3β activity was measured by non-radio isotopic in vitro kinase assay. Migration and invasion abilities of MG-63 cells treated with small-molecular GSK3β inhibitors were respectively examined by monolayer-based wound-healing assay and transwell assay. The mRNA expressions of GSK3β, matrix metalloproteinase-2 (MMP-2), MMP-9, phosphatase with tensin homology (PTEN), and focal adhesion kinase (FAK) were detected after siRNA transfection for 72 h. Meanwhile, protein expressions of GSK3β, FAK, p-FAKY397, PTEN, MMP-2, and MMP-9 were measured by Western blotting.Results: Clinical osteosarcoma tissues with metastasis showed higher GSK3β expressions. MG63 and U2-OS cells that were easy to occur metastasis showed significantly higher expressions and activities of GSK3β than SaOS-2 cells. Inhibition of GSK3β with small-molecular GSK3β inhibitors in MG63 cells significantly attenuated cell migration and invasion. These effects were associated with reduced expressions of MMP-2 and MMP-9. Moreover, increased PTEN and decreased p-FAKY397 expressions were observed following GSK3β knockdown by siRNA transfection. Conclusion: GSK3β might promote osteosarcoma invasion and migration via pathways associated with PTEN and phosphorylation of FAK.  相似文献   

10.
Raf kinase inhibitor protein (RKIP) plays a pivotal role in several intracellular signaling cascades and has been implicated as a metastasis suppressor in multiple cancer cells including prostate cancer cells, but the mechanism is not very clear. In this study, we investigated the effect of RKIP on cell proliferation, migration and invasion using human prostate cancer PC-3M cells as a model system. Our results indicate that RKIP does not effect cell proliferation in PC-3M cells, but inhibits both cell migration and cell invasion. In association with this inhibitory effect, RKIP down-regulates matrix metalloproteinases (MMP-2 and MMP-9), cathepsin B and urinary plasminogen activator (uPA). Also RKIP has the ability to regulate the expression of E-cadherin. But ectopic expression of RKIP does not affect the level of the Snail protein. As it has been indicated here, RKIP inhibits the migration and invasion ability of human prostate cancer cells through regulation of the extracellular matrix. These findings provide new mechanistic insight how RKIP suppresses metastasis in vitro.  相似文献   

11.
There is considerable interest in understanding prostate cancer metastasis to bone and the interaction of these cells with the bone microenvironment. Osteonectin/SPARC/BM-40 is a collagen binding matricellular protein that is enriched in bone. Its expression is increased in prostate cancer metastases, and it stimulates the migration of prostate carcinoma cells. However, the presence of osteonectin in cancer cells and the stroma may limit prostate tumor development and progression. To determine how bone matrix osteonectin affects the behavior of prostate cancer cells, we modeled prostate cancer cell-bone interactions using the human prostate cancer cell line PC-3, and mineralized matrices synthesized by wild type and osteonectin-null osteoblasts in vitro. We developed this in vitro system because the structural complexity of collagen matrices in vivo is not mimicked by reconstituted collagen scaffolds or by more complex substrates, like basement membrane extracts. Second harmonic generation imaging demonstrated that the wild type matrices had thick collagen fibers organized into longitudinal bundles, whereas osteonectin-null matrices had thinner fibers in random networks. Importantly, a mouse model of prostate cancer metastases to bone showed a collagen fiber phenotype similar to the wild type matrix synthesized in vitro. When PC-3 cells were grown on the wild type matrices, they displayed decreased cell proliferation, increased cell spreading, and decreased resistance to radiation-induced cell death, compared to cells grown on osteonectin-null matrix. Our data support the idea that osteonectin can suppress prostate cancer pathogenesis, expanding this concept to the microenvironment of skeletal metastases.  相似文献   

12.
目的:构建针对Sp1基因siRNA真核表达载体,转染前列腺癌细胞PC-3,研究反式作用因子Sp1时CD59表达的影响.方法:应用siRNA表达载体介导的RNAi技术,构建含特异性sp1基因的重组载体pSUPER-siSp1,脂质体法转染前列腺癌细胞,G418筛选建立稳定表达转染基因的细胞株,Western blotting检测转染细胞中sp1和CD59基因的表达,MTT和染料释放试验判断CD59基因抑制后对补体溶破的抵抗作用.结果:成功构建了Sp1基因siRNA真核表达载体,转染PC-3细胞可表达荧光蛋白,稳定转染的Pc-3细胞Sp1及CD59基因蛋白水平降低,MTT和染料释放实验表明CD59基因受抑制后对补体溶破的抵抗作用降低.结论:siRNA-Sp1重组载体有效地抑制了CD59的表达,降低CD59的抗补体活性,结果证明反式作用因子Sp1是CD59表达调控中重要的转录因子,为探讨CD59在肿瘤细胞中高表达的研究奠定了基础.  相似文献   

13.
Background: Cancer metastasis, involving multiple processes and various cytophysiological changes, is a primary cause of cancer death and may complicate the clinical management, even lead to death. Quercetin is a flavonoid and widely used as an antioxidant and recent studies have revealed its pleiotropic anticancer and antiproliferative capabilities. Gelatinases A and B (matrixmetalloproteinases 2 and 9) are enzymes known to involve in tumor invasion and metastases. In this study, we observed the precise involvement of quercetin role on these proteinases expression and activity. Design and methods: PC-3 cells were treated with quercetin at various concentrations (50 and 100 μM), for 24 h period and then subjected to western blot analysis to investigate the impact of quercetin on matrix metalloproteinase-2 (MMP-2) and 9 (MMP-9) expressions. Conditioned medium and cell lysate of quercetin-treated PC-3 cells were subjected to western blot analysis for proteins expression of MMP-2 and MMP-9. Gelatin zymography was also performed in quercetin treated PC-3 cells. Results: The results showed that quercetin treatment decreased the expressions of MMP-2 and MMP-9 in dose-dependent manner. The level of pro-MMP-9 was found to be high in the 100 μM quercetin-treated cell lysate of PC-3 cells, suggesting inhibitory role of quercetin on pro-MMP-9 activation. Gelatin zymography study also showed the decreased activities of MMP-2 and MMP-9 in quercetin treated cells. Conclusion: Hence, we speculated that inhibition of metastasis-specific MMPs in cancer cells may be one of the targets for anticancer function of quercetin, and thus provides the molecular basis for the development of quercetin as a novel chemopreventive agent for metastatic prostate cancer.  相似文献   

14.
Resveratrol possesses a wide spectrum of pharmacological properties and has been an ideal alternative drug for the treatment of different cancers, including prostate cancer. However, the mechanisms by which resveratrol inhibits the growth of prostate cancer are still not fully elucidated. To understand the effect of resveratrol on the apoptosis and the epithelial-to-mesenchymal transition (EMT) of prostate cancer as well as its related mechanism, we investigated the potential use of resveratrol in PC-3 prostate cancer cells in vitro using real-time PCR, fluorescence-activated cell sorting, Western blotting, etc. Resveratrol suppresses the PC-3 prostate cancer cell growth and induces apoptosis. Resveratrol also influences the expression of EMT-related proteins (increased E-cadherin and decreased Vimentin expression). Finally, resveratrol also suppressed Akt phosphorylation in PC-3 cells. This study indicates that resveratrol may be a potential anti-cancer treatment for prostate cancer; moreover, it provides new evidence that resveratrol suppresses prostate cancer growth and metastasis.  相似文献   

15.
BackgroundWithaferin A, which is a naturally derived steroidal lactone, has been found to prevent angiogenesis and metastasis in diverse tumor models. It has also been recognized by different groups for prominent anti-carcinogenic roles. However, in spite of these studies on withanolides, their detailed anti-metastatic mechanism of action remained unknown. The current study has poised to address the machinery involved in invasion regulation by stable derivative of Withaferin A, 3-azido Withaferin A (3-azidoWA) in human cervical HeLa and prostate PC-3 cells.Conclusion/SignificanceFor this report, we found that 3-azidoWA suppressed motility and invasion of HeLa and PC-3 cells in MMP-2 dependent manner. Our in vitro result strongly suggests that sub-toxic doses of 3-azidoWA enhanced the secretion of extracellular Par-4 that abolished secretory MMP-2 expression and activity. Depletion of secretory Par-4 restored MMP-2 expression and invasion capability of HeLa and PC-3 cells. Further, our findings implied that 3-azidoWA attenuated internal phospho-ERK and phospho-Akt expression in a dose dependent manner might play a key role in inhibition of mouse angiogenesis by 3-azidoWA.  相似文献   

16.
人同源盒基因NKX3.1对前列腺癌细胞的诱导凋亡作用   总被引:3,自引:0,他引:3  
构建人同源盒基因NKX3.1 cDNA真核表达载体,研究其在前列腺癌细胞PC-3、LNCaP 中的表达及对细胞的促凋亡作用.以人前列腺癌细胞LNCaP细胞中的总RNA为模板,RT-PCR扩增NKX3.1基因全长编码片段,将NKX3.1 cDNA重组到真核表达载体pcDNA3.1(+)中; 将pcDNA3.1-NKX3.1表达载体瞬时转染前列腺癌细胞PC-3和LNCaP 细胞,用RT-PCR和Western印迹检测NKX3.1 cDNA在转录水平和蛋白水平的表达;绘制细胞生长曲线,观察NKX3.1对前列腺癌细胞增殖的抑制作用;用DNA/ladder和流式细胞术检测NKX3.1对前列腺癌细胞凋亡的影响,进一步用RT PCR检测凋亡相关基因caspase3、caspase8、caspase9、Apaf1、survivin和Bcl2表达的变化.人同源盒基因NKX3.1 cDNA真核表达载体pcDNA3.1-NKX3.1经酶切及测序鉴定正确. pcDNA3.1-NKX3.1转染PC-3和LNCaP细胞后,经RT-PCR和Western印迹证明能有效表达NKX3.1.生长曲线显示,前列腺癌细胞转染NKX3.1 cDNA后细胞增殖受到抑制;前列腺癌细胞转染NKX3.1 cDNA 48 h后,DNA电泳呈现具有凋亡特征的DNA ladder;流式细胞术检测出现明显凋亡峰;RT-PCR检测凋亡相关基因.结果显示,caspase3、caspase8、caspase9基因表达明显增加,Bcl2基因表达明显减少.本研究成功构建了真核表达载体pcDNA3.1 NKX3.1, 转染PC3和LNCaP细胞后能有效表达,并对细胞具有诱导凋亡作用  相似文献   

17.
NKX3.1, a prostate-specific homeobox gene, plays an important role in prostate cancer and usually functions as tumor suppressor gene. Previously we have demonstrated that forced expression of NKX3.1 reduced cell growth and invasion in prostate cancer cell line PC-3. Presently, we investigated the effect of NKX3.1 on the sensitivity of the prostate cancer cells to apoptosis inducer tumor necrosis factor-α (TNF-α) and cycloheximide (CHX). PC-3 cells were transfected with NKX3.1 expression plasmid (pcDNA3.1-NKX3.1) and LNCaP cells were transfected with siRNA expression plasmid (pRNAT-RNAi1) targeting NKX3.1. The cell morphology and apoptotic rate were analyzed by Hoechst 33342 staining and Flow Cytometry in absence or presence of TNF-α and CHX. The activity of caspase-3 was determined using DEVD-pNA as substrate. Simultaneously, the effect of NKX3.1 on caspase-3 expression was detected using RT-PCR and Western blot. The results showed that ectopic expression of NKX3.1 promoted TNF-α/CHX-induced apoptosis in PC-3 cells, whereas knockdown of NKX3.1 protected LNCaP cells from apoptosis induced by TNF-α/CHX. The pro-apoptosis activity of NKX3.1 might partially contribute to its elevation of caspase-3 expression and activity. Manipulating NKX3.1 expression should be a promising therapeutic strategy for treating both androgen-dependent and androgen-independent prostate cancer.  相似文献   

18.
19.
Human metastasis-associated gene 1 (MTA1) is highly associated with the metastasis of prostate cancer; however, the molecular functions of MTA1 that facilitate metastasis remain unclear. In this study, we demonstrate that the silencing of MTA1 by siRNA treatment results in the upregulation of E-cadherin expression by the phosphorylation of AKT (p-AKT) and decreases the invasiveness of prostate cancer cells. We show that MTA1 is expressed in over 90% of prostate cancer tissues, especially metastatic prostate cancer tissue, comparing to non-expression in normal prostate tissue. RT-PCR analysis and Western blot assay showed that MTA1 expression is significantly higher in highly metastatic prostate cancer PC-3M-1E8 cells (1E8) than in poorly metastatic prostate cancer PC-3M-2B4 cells (2B4). Silencing MTA1 expression by siRNA treatment in 1E8 cells increased the cellular malignant characters, including the cellular adhesive ability, decreased the cellular invasive ability and changed the polarity of cellular cytoskeleton. 1E8 cells over-expressing MTA1 had a reduced expression of E-cadherin, while 1E8 cells treated with MTA1 siRNA had a higher expression of E-cadherin. The expression of phosphorylated AKT (p-AKT) or the inhibition of p-AKT by wortmannin treatment (100 nM) significantly altered the function of MTA1 in the regulation of E-cadherin expression. Alterations in E-cadherin expression changed the role of p-AKT in cellular malignant characters. All of these results demonstrate that MTA1 plays an important role in controlling the malignant transformation of prostate cancer cells through the p-AKT/E-cadherin pathway. This study also provides a new mechanistic role for MTA1 in the regulation of prostate cancer metastasis.  相似文献   

20.
Members of the BMP and Wnt protein families play a relevant role in physiologic and pathologic bone turnover. Extracellular antagonists are crucial for the modulation of their activity. Lack of expression of the BMP antagonist noggin by osteoinductive, carcinoma-derived cell lines is a determinant of the osteoblast response induced by their bone metastases. In contrast, osteolytic, carcinoma-derived cell lines express noggin constitutively. We hypothesized that cancer cell-derived noggin may contribute to the pathogenesis of osteolytic bone metastasis of solid cancers by repressing bone formation. Intra-osseous xenografts of PC-3 prostate cancer cells induced osteolytic lesions characterized not only by enhanced osteoclast-mediated bone resorption, but also by decreased osteoblast-mediated bone formation. Therefore, in this model, uncoupling of the bone remodeling process contributes to osteolysis. Bone formation was preserved in the osteolytic lesions induced by noggin-silenced PC-3 cells, suggesting that cancer cell-derived noggin interferes with physiologic bone coupling. Furthermore, intra-osseous tumor growth of noggin-silenced PC-3 cells was limited, most probably as a result of the persisting osteoblast activity. This investigation provides new evidence for a model of osteolytic bone metastasis where constitutive secretion of noggin by cancer cells mediates inhibition of bone formation, thereby preventing repair of osteolytic lesions generated by an excess of osteoclast-mediated bone resorption. Therefore, noggin suppression may be a novel strategy for the treatment of osteolytic bone metastases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号