首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aerobic glucose metabolism by Pseudomonas aeruginosa biofilms at various calcium loading rates was investigated. The influence of calcium on specific growth rate, extracellular polymeric substance (EPS) formation rate, biofilm detachment rate, and biofilm calcium concentrations was determined. Calcium accumulated in the biofilm in proportion to the liquid phase concentration. Increasing calcium concentration increased the cohesiveness of the biofilm as indicated by a lower relative detachment rate. Specific activity in the biofilm was the same as that measured in a chemostat and was not influenced by changing calcium concentration. EPS formation rate in the biofilm was unaffected by calcium concentration but was higher than that observed in a chemostat.  相似文献   

2.
The type I protein secretion system of Rhizobium leguminosarum bv. viciae encoded by the prsD and prsE genes is responsible for secretion of the exopolysaccharide (EPS)-glycanases PlyA and PlyB. The formation of a ring of biofilm on the surface of the glass in shaken cultures by both the prsD and prsE secretion mutants was greatly affected. Confocal laser scanning microscopy analysis of green-fluorescent-protein-labeled bacteria showed that during growth in minimal medium, R. leguminosarum wild type developed microcolonies, which progress to a characteristic three-dimensional biofilm structure. However, the prsD and prsE secretion mutants were able to form only an immature biofilm structure. A mutant disrupted in the EPS-glycanase plyB gene showed altered timing of biofilm formation, and its structure was atypical. A mutation in an essential gene for EPS synthesis (pssA) or deletion of several other pss genes involved in EPS synthesis completely abolished the ability of R. leguminosarum to develop a biofilm. Extracellular complementation studies of mixed bacterial cultures confirmed the role of the EPS and the modulation of the biofilm structure by the PrsD-PrsE secreted proteins. Protein analysis identified several additional proteins secreted by the PrsD-PrsE secretion system, and N-terminal sequencing revealed peptides homologous to the N termini of proteins from the Rap family (Rhizobium adhering proteins), which could have roles in cellular adhesion in R. leguminosarum. We propose a model for R. leguminosarum in which synthesis of the EPS leads the formation of a biofilm and several PrsD-PrsE secreted proteins are involved in different aspects of biofilm maturation, such as modulation of the EPS length or mediating attachment between bacteria.  相似文献   

3.
Photoautotrophic biofilms play an important role in various aquatic habitats and are composed of prokaryotic and/or eukaryotic organisms embedded in extracellular polymeric substances (EPS). We have isolated diatoms as well as bacteria from freshwater biofilms to study organismal interactions between representative isolates. We found that bacteria have a strong impact on the biofilm formation of the pennate diatom Achnanthidium minutissimum. This alga produces extracellular capsules of insoluble EPS, mostly carbohydrates (CHO), only in the presence of bacteria (xenic culture). The EPS themselves also have a strong impact on the aggregation and attachment of the algae. In the absence of bacteria (axenic culture), A. minutissimum did not form capsules and the cells grew completely suspended. Fractionation and quantification of CHO revealed that the diatom in axenic culture produces large amounts of soluble CHO, whereas in the xenic culture mainly insoluble CHO were detected. For investigation of biofilm formation by A. minutissimum, a bioassay was established using a diatom satellite Bacteroidetes bacterium that had been shown to induce capsule formation of A. minutissimum. Interestingly, capsule and biofilm induction can be achieved by addition of bacterial spent medium, indicating that soluble hydrophobic molecules produced by the bacterium may mediate the diatom/bacteria interaction. With the designed bioassay, a reliable tool is now available to study the chemical interactions between diatoms and bacteria with consequences for biofilm formation.  相似文献   

4.
It is well known that sessile bacteria have a strong tendency to exist in a biofilm phenotype, whereby bacterial cells aggregate and produce a gel-like extracellular matrix, which, in an infection scenario, offers a significant barrier to attack by conventional antibiotics and the immune system. In this paper we develop a multi-phase model of a maturing Pseudomonas aeruginosa biofilm, allowing for the production and secretion of exopolysaccharide (EPS). The primary quorum-sensing system of P. aeruginosa (namely the lasR system) is believed to be required for full biofilm development, and we thus take the synthesis of EPS to be regulated by the cognate signal molecule, 3-oxo-C12-HSL. We also take EPS and signal production, along with bacterial growth, to be limited by oxygen availability, thus factoring in the nutrient poor conditions deep inside the biofilm. We use simulations to examine the role played by quorum sensing in the biofilm maturation process, and to investigate the effect of anti-quorum sensing and antibiotic treatments on EPS concentration, signal level, bacterial numbers and biofilm growth rate. In addition, we undertake analysis of the associated travelling-wave behaviour.  相似文献   

5.
6.
The genome of the endophytic diazotrophic bacterial species Gluconacetobacter diazotrophicus PAL5 (PAL5) revealed the presence of a gum gene cluster. In this study, the gumD gene homologue, which is predicted to be responsible for the first step in exopolysaccharide (EPS) production, was insertionally inactivated and the resultant mutant (MGD) was functionally studied. The mutant MGD presented normal growth and nitrogen (N(2)) fixation levels but did not produce EPS when grown on different carbon sources. MGD presented altered colony morphology on soft agar plates (0.3% agar) and was defective in biofilm formation on glass wool. Most interestingly, MGD was defective in rice root surface attachment and in root surface and endophytic colonization. Genetic complementation reverted all mutant phenotypes. Also, the addition of EPS purified from culture supernatants of the wild-type strain PAL5 to the mutant MGD was effective in partially restoring wild-type biofilm formation and plant colonization. These data provide strong evidence that the PAL5 gumD gene is involved in EPS biosynthesis and that EPS biosynthesis is required for biofilm formation and plant colonization. To our knowledge, this is the first report of a role of EPS in the endophytic colonization of graminaceous plants by a nitrogen-fixing bacterium.  相似文献   

7.
The current work deals with the studies on characterization of two biofilm-forming bacteria isolated from the oral cavity. The major constituent of biofilm other than bacterial cells is the extracellular polymeric substance (EPS) matrix, which is secreted by the bacterial cells themselves. Physical properties of biofilms such as attachment, mechanical strength, antibiotic resistance can be attributed to EPS matrix. Molecular phylogeny confirmed these two isolates as Pseudomonas aeruginosa and Bacillus subtilis. It was observed that cell attachment in both the strains was maximal when xylose was used as the sole carbon source. The EPS characterization result indicated the presence of a macromolecular complex constituting of carbohydrate, protein, lipids and nucleic acids. Test for biofilm formation in the presence of metal salts of iron and zinc showed moderate to high inhibition of biofilm formation. However, calcium, iron and copper have been found to enhance biofilm growth significantly. There was more than 50 % increase in biofilm growth by P. aeruginosa with an increase in calcium concentration up to 80 ppm (Two tailed t-test P?<?0.05), whereas ≥ 15 % increase in biofilm growth by B. subtilis was observed in the presence of 80 ppm of calcium. However, variations were significant (Two way ANOVA, P?<?0.01) between different metals in different concentrations. In this study, attempts have been made to examine the effect of different carbon sources and physiological conditions on biofilm growth.  相似文献   

8.
Kim M  Park JM  Um HJ  Lee KH  Kim H  Min J  Kim YH 《Biofouling》2011,27(8):851-857
To gain a better insight into biofilm composition, the exopolysaccharide (EPS) of the Gram-negative bacterium Vibrio vulnificus was studied. Monosaccharide composition analysis of the wild-type and mutant V. vulnificus EPS carried out with Bio-liquid chromatography revealed the presence of D-glucosamine, D-galactose, D-glucose and D-xylose in both strains. D-galactosamine was found only in the mutant that formed less biofilm compared to its wild-type. The influence of galactosamine on biofilm formation was then studied by adding this substance gradually to six different Gram-negative/positive bacteria associated with various autoinducers. Four bacterial species known to use the autoinducer type-2 signaling system produced less biofilm in the presence of galactosamine. No significant inhibition of biofilm formation was observed in bacteria that produce autoinducer type-1 signal molecules. Galactosamine was also immobilized on polymeric nanofibers to determine its re-usability for the study of biofilm inhibition. The immobilized galactosamine retained >65% of its initial antifouling activity after 10 repeated uses. The results of this study suggest the antifouling role of galactosamine for bacteria that produce AI-2.  相似文献   

9.
Recently, we demonstrated that Salmonella enterica serovar Typhimurium can form biofilm on HEp-2 cells in a type 1 fimbria-dependent manner. Previous work on Salmonella exopolysaccharide (EPS) in biofilm indicated that the EPS composition can vary based upon the substratum on which the bacterial biofilm forms. We have investigated the role of genes important in the production of colanic acid and cellulose, common components of EPS. A mutation in the colanic acid biosynthetic gene, wcaM, was introduced into S. enterica serovar Typhimurium strain BJ2710 and was found to disrupt biofilm formation on HEp-2 cells and chicken intestinal tissue, although biofilm formation on a plastic surface was unaffected. Complementation of the wcaM mutant with the functional gene restored the biofilm phenotype observed in the parent strain. A mutation in the putative cellulose biosynthetic gene, yhjN, was found to disrupt biofilm formation on HEp-2 cells and chicken intestinal epithelium, as well as on a plastic surface. Our data indicate that Salmonella attachment to, and growth on, eukaryotic cells represent complex interactions that are facilitated by species of EPS.  相似文献   

10.
Yang X  Teng F  Zeng H  Liu Y 《Biofouling》2012,28(5):417-431
The impact of cranberry juice was investigated with respect to the initial adhesion of three isogenic strains of the bacterium Burkholderia cepacia with different extracellular polymeric substance (EPS) producing capacities, viz. a wild-type cepacian EPS producer PC184 and its mutant strains PC184rml with reduced EPS production and PC184bceK with a deficiency in EPS production. Adhesion experiments conducted in a parallel-plate flow chamber demonstrated that, in the absence of cranberry juice, strain PC184 had a significantly higher adhesive capacity compared to the mutant strains. In the presence of cranberry juice, the adhesive capacity of the EPS-producing strain PC184 was largely reduced, while cranberry juice had little impact on the adhesion behavior of either mutant strain. Thermodynamic modeling supported the results from adhesion experiments. Surface force apparatus (SFA) and scanning electron microscope (SEM) studies demonstrated a strong association between cranberry juice components and bacterial EPS. It was concluded that cranberry juice components could impact bacterial initial adhesion by adhering to the EPS and impairing the adhesive capacity of the cells, which provides an insight into the development of novel treatment strategies to block the biofilm formation associated with bacterial infection.  相似文献   

11.
12.
Extracellular DNA in single- and multiple-species unsaturated biofilms   总被引:1,自引:0,他引:1  
The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA.  相似文献   

13.
One intriguing discovery in modern microbiology is the extensive presence of extracellular DNA (eDNA) within biofilms of various bacterial species. Although several biological functions have been suggested for eDNA, including involvement in biofilm formation, the detailed mechanism of eDNA integration into biofilm architecture is still poorly understood. In the biofilms formed by Myxococcus xanthus, a Gram-negative soil bacterium with complex morphogenesis and social behaviors, DNA was found within both extracted and native extracellular matrices (ECM). Further examination revealed that these eDNA molecules formed well organized structures that were similar in appearance to the organization of exopolysaccharides (EPS) in ECM. Biochemical and image analyses confirmed that eDNA bound to and colocalized with EPS within the ECM of starvation biofilms and fruiting bodies. In addition, ECM containing eDNA exhibited greater physical strength and biological stress resistance compared to DNase I treated ECM. Taken together, these findings demonstrate that DNA interacts with EPS and strengthens biofilm structures in M. xanthus.  相似文献   

14.
This study investigated soluble (Sol-EPS), loosely bound (LB-EPS), and tightly bound extracellular polymeric substances (TB-EPS) harvested from biofilm and planktonic cultures of the marine bacterium Pseudoalteromonas ulvae TC14. The aim of the characterization (colorimetric methods, FTIR, GC-MS, NMR, HPGPC, and AFM analyses) was to identify new anti-biofilm compounds; activity was assessed using the BioFilm Ring Test®. A step-wise separation of EPS was designed, based on differences in water-solubility and acidity. An acidic fraction was isolated from TB-EPS, which strongly inhibited biofilm formation by marine bacterial strains in a concentration-dependent manner. The main constituents of this fraction were characterized as two glucan-like polysaccharides. An active poly(glutamyl-glutamate) fraction was also recovered from TB-EPS. The distribution of these key EPS components in Sol-EPS, LB-EPS, and TB-EPS was distinct and differed quantitatively in biofilm vs planktonic cultures. The anti-biofilm potential of the fractions emphasizes the putative antifouling role of EPS in the environment.  相似文献   

15.
Extracellular DNA in Single- and Multiple-Species Unsaturated Biofilms   总被引:9,自引:2,他引:7  
The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA.  相似文献   

16.
Most chronic and recurrent bacterial infections involve a biofilm component, the foundation of which is the extracellular polymeric substance (EPS). Extracellular DNA (eDNA) is a conserved and key component of the EPS of pathogenic biofilms. The DNABII protein family includes integration host factor (IHF) and histone‐like protein (HU); both are present in the extracellular milieu. We have shown previously that the DNABII proteins are often found in association with eDNA and are critical for the structural integrity of bacterial communities that utilize eDNA as a matrix component. Here, we demonstrate that uropathogenic Escherichia coli (UPEC) strain UTI89 incorporates eDNA within its biofilm matrix and that the DNABII proteins are not only important for biofilm growth, but are limiting; exogenous addition of these proteins promotes biofilm formation that is dependent on eDNA. In addition, we show that both subunits of IHF, yet only one subunit of HU (HupB), are critical for UPEC biofilm development. We discuss the roles of these proteins in context of the UPEC EPS.  相似文献   

17.
Summary A heavy metal resistant bacterium, Bacillus circulans strain EB1 showed a high cadmium biosorption capacity coupled with a high tolerance to this metal when grown in its presence. Bacillus circulans EB1 cells grown in the presence of 28.1 mg cadmium/l were capable of removing cadmium with a specific biosorption capacity of 5.8 mg Cd/g dry wt biomass in the first 8 h. When the cells were pre-conditioned with low concentrations of cadmium in pre-grown medium, the uptake was increased to 6.7 mg Cd/g dry wt biomass. The maximum uptake of␣cadmium was during mid-logarithmic phase of growth. The resting cells (both wet and dry) of EB1 were also able to biosorb cadmium. Specific biosorption capacities of wet and dry biomass were 9.8 and 26.5 mg Cd/g dry wt biomass, respectively. Maximum cadmium removals by both wet and dry cells were at pH 7.0. The results showed that the cadmium removal capacity of resting cells was markedly higher than that of growing cells. Since both growing and resting cells had a high biosorption capacity for cadmium, EB1 cells could serve as an excellent biosorbent for removal of cadmium from natural environments.  相似文献   

18.
The impact of cranberry juice was investigated with respect to the initial adhesion of three isogenic strains of the bacterium Burkholderia cepacia with different extracellular polymeric substance (EPS) producing capacities, viz. a wild-type cepacian EPS producer PC184 and its mutant strains PC184rml with reduced EPS production and PC184bceK with a deficiency in EPS production. Adhesion experiments conducted in a parallel-plate flow chamber demonstrated that, in the absence of cranberry juice, strain PC184 had a significantly higher adhesive capacity compared to the mutant strains. In the presence of cranberry juice, the adhesive capacity of the EPS-producing strain PC184 was largely reduced, while cranberry juice had little impact on the adhesion behavior of either mutant strain. Thermodynamic modeling supported the results from adhesion experiments. Surface force apparatus (SFA) and scanning electron microscope (SEM) studies demonstrated a strong association between cranberry juice components and bacterial EPS. It was concluded that cranberry juice components could impact bacterial initial adhesion by adhering to the EPS and impairing the adhesive capacity of the cells, which provides an insight into the development of novel treatment strategies to block the biofilm formation associated with bacterial infection.  相似文献   

19.
The efficacy of UV treatment to control bacterial adhesion onto hard surfaces was investigated in laboratory conditions. The major characteristics necessary for biofilm formation like extracellular polymeric substance (EPS) production, carbohydrate and protein concentration in EPS, and adhesion ability onto hard surface were studied using two bacterial strains isolated from marine biofilms. The results showed that there was a considerable difference between the control and UV treated bacterial cultures in their viability, production of EPS, and adhesion ability. The protein and carbohydrate concentration of the EPS and the adhesion of bacterial cells to surface were also considerably reduced due to UV treatment. This study indicates that treatment of water with UV light may be used to control biofilm development on hard surfaces.  相似文献   

20.
The transport of Cd2+ and the effects of this ion on secretory activity and metabolism were investigated in beta cell-rich pancreatic islets isolated from obese-hyperglycemic mice. The endogenous cadmium content was 2.5 mumol/kg dry wt. After 60 min of incubation in a Ca2+-deficient medium containing 2.5 microM Cd2+ the islet cadmium content increased to 0.18 mmol/kg dry wt. This uptake was reduced by approx. 50% in the presence of 1.28 mM Ca2+. The incorporation of Cd2+ was stimulated either by raising the concentration of glucose to 20 mM or K+ to 30.9 mM. Whereas D-600 suppressed the stimulatory effect of glucose by 75%, it completely abolished that obtained with high K+. Only about 40% of the incorporated cadmium was mobilized during 60 min of incubation in a Cd2+-free medium containing 0.5 mM EGTA. It was possible to demonstrate a glucose-induced suppression of Cd2+ efflux into a Ca2+-deficient medium. Concentrations of Cd2+ up to 2.5 microM did not affect glucose oxidation, whereas, there was a progressive inhibition when the Cd2+ concentration was above 10 microM. Basal insulin release was stimulated by 5 microM Cd2+. At a concentration of 160 microM, Cd2+ did not affect basal insulin release but significantly inhibited the secretory response to glucose. It is concluded that the beta cell uptake of Cd2+ is facilitated by the activation of voltage-dependent Ca2+ channels. Apparently, the accumulation of Cd2+ mimics that of Ca2+ also involving a component of intracellular sequestration promoted by glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号