首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Zhang L  Zhang H  Liu P  Hao H  Jin JB  Lin J 《PloS one》2011,6(10):e26129

Background

Cell plate formation during plant cytokinesis is facilitated by SNARE complex-mediated vesicle fusion at the cell-division plane. However, our knowledge regarding R-SNARE components of membrane fusion machinery for cell plate formation remains quite limited.

Methodology/Principal Findings

We report the in vivo function of Arabidopsis VAMP721 and VAMP722, two closely sequence-related R-SNAREs, in cell plate formation. Double homozygous vamp721vamp722 mutant seedlings showed lethal dwarf phenotypes and were characterized by rudimentary roots, cotyledons and hypocotyls. Furthermore, cell wall stubs and incomplete cytokinesis were frequently observed in vamp721vamp722 seedlings. Confocal images revealed that green fluorescent protein-tagged VAMP721 and VAMP722 were preferentially localized to the expanding cell plates in dividing cells. Drug treatments and co-localization analyses demonstrated that punctuate organelles labeled with VAMP721 and VAMP722 represented early endosomes overlapped with VHA-a1-labeled TGN, which were distinct from Golgi stacks and prevacuolar compartments. In addition, protein traffic to the plasma membrane, but not to the vacuole, was severely disrupted in vamp721vamp722 seedlings by subcellular localization of marker proteins.

Conclusion/Significance

These observations suggest that VAMP721 and VAMP722 are involved in secretory trafficking to the plasma membrane via TGN/early endosomal compartment, which contributes substantially to cell plate formation during plant cytokinesis.  相似文献   

2.
3.

Background

Microorganisms capable of surviving within macrophages are rare, but represent very successful pathogens. One of them is Mycobacterium tuberculosis (Mtb) whose resistance to early mechanisms of macrophage killing and failure of its phagosomes to fuse with lysosomes causes tuberculosis (TB) disease in humans. Thus, defining the mechanisms of phagosome maturation arrest and identifying mycobacterial factors responsible for it are key to rational design of novel drugs for the treatment of TB. Previous studies have shown that Mtb and the related vaccine strain, M. bovis bacille Calmette-Guérin (BCG), disrupt the normal function of host Rab5 and Rab7, two small GTPases that are instrumental in the control of phagosome fusion with early endosomes and late endosomes/lysosomes respectively.

Methodology/Principal Findings

Here we show that recombinant Mtb nucleoside diphosphate kinase (Ndk) exhibits GTPase activating protein (GAP) activity towards Rab5 and Rab7. Then, using a model of latex bead phagosomes, we demonstrated that Ndk inhibits phagosome maturation and fusion with lysosomes in murine RAW 264.7 macrophages. Maturation arrest of phagosomes containing Ndk-beads was associated with the inactivation of both Rab5 and Rab7 as evidenced by the lack of recruitment of their respective effectors EEA1 (early endosome antigen 1) and RILP (Rab7-interacting lysosomal protein). Consistent with these findings, macrophage infection with an Ndk knocked-down BCG strain resulted in increased fusion of its phagosome with lysosomes along with decreased survival of the mutant.

Conclusion

Our findings provide evidence in support of the hypothesis that mycobacterial Ndk is a putative virulence factor that inhibits phagosome maturation and promotes survival of mycobacteria within the macrophage.  相似文献   

4.

Background

The vacuolar H+-ATPase, or V-ATPase, is a highly-conserved multi-subunit enzyme that transports protons across membranes at the expense of ATP. The resulting proton gradient serves many essential functions, among them energizing transport of small molecules such as neurotransmitters, and acidifying organelles such as endosomes. The enzyme is not present in the plasma membrane from which a phagosome is formed, but is rapidly delivered by fusion with endosomes that already bear the V-ATPase in their membranes. Similarly, the enzyme is thought to be retrieved from phagosome membranes prior to exocytosis of indigestible material, although that process has not been directly visualized.

Methodology

To monitor trafficking of the V-ATPase in the phagocytic pathway of Dictyostelium discoideum, we fed the cells yeast, large particles that maintain their shape during trafficking. To track pH changes, we conjugated the yeast with fluorescein isothiocyanate. Cells were labeled with VatM-GFP, a fluorescently-tagged transmembrane subunit of the V-ATPase, in parallel with stage-specific endosomal markers or in combination with mRFP-tagged cytoskeletal proteins.

Principal Findings

We find that the V-ATPase is commonly retrieved from the phagosome membrane by vesiculation shortly before exocytosis. However, if the cells are kept in confined spaces, a bulky phagosome may be exocytosed prematurely. In this event, a large V-ATPase-rich vacuole coated with actin typically separates from the acidic phagosome shortly before exocytosis. This vacuole is propelled by an actin tail and soon acquires the properties of an early endosome, revealing an unexpected mechanism for rapid recycling of the V-ATPase. Any V-ATPase that reaches the plasma membrane is also promptly retrieved.

Conclusions/Signficance

Thus, live cell microscopy has revealed both a usual route and alternative means of recycling the V-ATPase in the endocytic pathway.  相似文献   

5.

Background

Trypanosoma cruzi, an intracellular protozoan parasite that infects humans and other mammalian hosts, is the etiologic agent in Chagas disease. This parasite can invade a wide variety of mammalian cells. The mechanism(s) by which T. cruzi invades its host cell is not completely understood. The activation of many signaling receptors during invasion has been reported; however, the exact mechanism by which parasites cross the host cell membrane barrier and trigger fusion of the parasitophorous vacuole with lysosomes is not understood.

Methodology/Principal Findings

In order to explore the role of the Low Density Lipoprotein receptor (LDLr) in T. cruzi invasion, we evaluated LDLr parasite interactions using immunoblot and immunofluorescence (IFA) techniques. These experiments demonstrated that T. cruzi infection increases LDLr levels in infected host cells, inhibition or disruption of LDLr reduces parasite load in infected cells, T. cruzi directly binds recombinant LDLr, and LDLr-dependent T. cruzi invasion requires PIP2/3. qPCR analysis demonstrated a massive increase in LDLr mRNA (8000 fold) in the heart of T. cruzi infected mice, which is observed as early as 15 days after infection. IFA shows a co-localization of both LDL and LDLr with parasites in infected heart.

Conclusions/Significance

These data highlight, for the first time, that LDLr is involved in host cell invasion by this parasite and the subsequent fusion of the parasitophorous vacuole with the host cell lysosomal compartment. The model suggested by this study unifies previous models of host cell invasion for this pathogenic protozoon. Overall, these data indicate that T. cruzi targets LDLr and its family members during invasion. Binding to LDL likely facilitates parasite entry into host cells. The observations in this report suggest that therapeutic strategies based on the interaction of T. cruzi and the LDLr pathway should be pursued as possible targets to modify the pathogenesis of disease following infection.  相似文献   

6.

Background and Aims

Root hairs are responsible for water and nutrient uptake from the soil and their growth is responsive to biotic and abiotic changes in their environment. Root hair expansion is a polarized process requiring secretory and endosomal pathways that deliver and recycle plasma membrane and cell wall material to the growing root hair tip. In this paper, the role of VTI13 (AT3G29100), a member of the VTI vesicular soluble NSF attachment receptor (SNARE) gene family in Arabidopsis thaliana, in root hair growth is described.

Methods

Genetic analysis and complementation of the vti13 root hair phenotypes of Arabidopsis thaliana were first used to assess the role of VTI13 in root hair growth. Transgenic lines expressing a green fluorescent protein (GFP)–VTI13 construct were used to characterize the intracellular localization of VTI13 in root hairs using confocal microscopy and immunotransmission electron microscopy.

Key Results

VTI13 was characterized and genetic analysis used to show that its function is required for root hair growth. Expression of a GFP–VTI13 fusion in the vti13 mutant background was shown to complement the vti13 root hair phenotype. GFP–VTI13 localized to both the vacuole membrane and a mobile endosomal compartment. The function of VTI13 was also required for the localization of SYP41 to the trans-Golgi network. Immunohistochemical analysis indicated that cell wall organization is altered in vti13 root hairs and root epidermal cells.

Conclusions

These results show that VTI13 plays a unique role in endosomal trafficking pathways associated with the vacuole within root hairs and is essential for the maintenance of cell wall organization and root hair growth in arabidopsis.  相似文献   

7.

Background

Graptopetalum paraguayense (GP) is a folk herbal medicine with hepatoprotective effects that is used in Taiwan. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of GP on experimental hepatic fibrosis in both dimethylnitrosamine (DMN)- and carbon tetrachloride (CCl4)-induced liver injury rats.

Methods

Hepatic fibrosis-induced rats were fed with the methanolic extract of GP (MGP) by oral administration every day. Immunohistochemistry, biochemical assays, and Western blot analysis were performed. The effects of MGP on the expression of fibrotic markers and cytokines in the primary cultured hepatic stellate cells (HSCs) and Kupffer cells, respectively, were evaluated.

Results

Oral administration of MGP significantly alleviated DMN- or CCl4-induced liver inflammation and fibrosis. High levels of alanine transaminase, aspartate transaminase, bilirubin, prothrombin activity and mortality rates also decreased in rats treated with MGP. There were significantly decreased hydroxyproline levels in therapeutic rats compared with those of the liver-damaged rats. Collagen I and alpha smooth muscle actin (α-SMA) expression were all reduced by incubation with MGP in primary cultured rat HSCs. Furthermore, MGP induced apoptotic cell death in activated HSCs. MGP also suppressed lipopolysaccharide-stimulated rat Kupffer cell activation by decreasing nitric oxide, tumor necrosis factor-α and interleukin-6 production, and increasing interleukin-10 expression.

Conclusions

The results show that the administration of MGP attenuated toxin-induced hepatic damage and fibrosis in vivo and inhibited HSC and Kupffer cell activation in vitro, suggesting that MGP might be a promising complementary or alternative therapeutic agent for liver inflammation and fibrosis.  相似文献   

8.

Background

Genetic studies in yeast have identified class E vps genes that form the ESCRT complexes required for protein sorting at the early endosome. In Drosophila, mutations of the ESCRT-II component vps25 cause endosomal defects leading to accumulation of Notch protein and increased Notch pathway activity. These endosomal and signaling defects are thought to account for several phenotypes. Depending on the developmental context, two different types of overgrowth can be detected. Tissue predominantly mutant for vps25 displays neoplastic tumor characteristics. In contrast, vps25 mutant clones in a wild-type background trigger hyperplastic overgrowth in a non-autonomous manner. In addition, vps25 mutant clones also promote apoptotic resistance in a non-autonomous manner.

Principal Findings

Here, we genetically characterize the remaining ESCRT-II components vps22 and vps36. Like vps25, mutants of vps22 and vps36 display endosomal defects, accumulate Notch protein and – when the tissue is predominantly mutant – show neoplastic tumor characteristics. However, despite these common phenotypes, they have distinct non-autonomous phenotypes. While vps22 mutations cause strong non-autonomous overgrowth, they do not affect apoptotic resistance. In contrast, vps36 mutations increase apoptotic resistance, but have little effect on non-autonomous proliferation. Further characterization reveals that although all ESCRT-II mutants accumulate Notch protein, only vps22 and vps25 mutations trigger Notch activity.

Conclusions/Significance

The ESCRT-II components vps22, vps25 and vps36 display common and distinct genetic properties. Our data redefine the role of Notch for hyperplastic and neoplastic overgrowth in these mutants. While Notch is required for hyperplastic growth, it appears to be dispensable for neoplastic transformation.  相似文献   

9.

Background

Epithelial barrier dysfunction is associated with the pathogenesis of a number of immune inflammations; the etiology is not fully understood. The fusion of endosome/lysosome is a critical process in the degradation of endocytic antigens in epithelial cells. Recent reports indicate that myosin VI (myo6) is involved in the activities of endosomes. The present study aims to investigate the role of myo6 in epithelial barrier dysfunction.

Results

The endosome accumulation was observed in myo6-deficient Rmcs. More than 80% endosomes were fused with lysosomes in naïve Rmcs while less than 30% endosomes were fused with lysosomes in the myo6-deficient Rmcs. The myo6-deficient Rmc monolayers showed high permeability to a macromolecular antigen, ovalbumin, the latter still conserved the antigenicity, which induced strong T cell activation.

Conclusions

We conclude that myo6 plays a critical role in the fusion of endosome/lysosome in Rmc epithelial cells. Deficiency of myo6 compromises the epithelial barrier function.  相似文献   

10.
With the exception of Reston and Lloviu viruses, filoviruses (marburgviruses, ebolaviruses, and “cuevaviruses”) cause severe viral hemorrhagic fevers in humans. Filoviruses use a class I fusion protein, GP1,2, to bind to an unknown, but shared, cell surface receptor to initiate virus-cell fusion. In addition to GP1,2, ebolaviruses and cuevaviruses, but not marburgviruses, express two secreted glycoproteins, soluble GP (sGP) and small soluble GP (ssGP). All three glycoproteins have identical N termini that include the receptor-binding region (RBR) but differ in their C termini. We evaluated the effect of the secreted ebolavirus glycoproteins on marburgvirus and ebolavirus cell entry, using Fc-tagged recombinant proteins. Neither sGP-Fc nor ssGP-Fc bound to filovirus-permissive cells or inhibited GP1,2-mediated cell entry of pseudotyped retroviruses. Surprisingly, several Fc-tagged Δ-peptides, which are small C-terminal cleavage products of sGP secreted by ebolavirus-infected cells, inhibited entry of retroviruses pseudotyped with Marburg virus GP1,2, as well as Marburg virus and Ebola virus infection in a dose-dependent manner and at low molarity despite absence of sequence similarity to filovirus RBRs. Fc-tagged Δ-peptides from three ebolaviruses (Ebola virus, Sudan virus, and Taï Forest virus) inhibited GP1,2-mediated entry and infection of viruses comparably to or better than the Fc-tagged RBRs, whereas the Δ-peptide-Fc of an ebolavirus nonpathogenic for humans (Reston virus) and that of an ebolavirus with lower lethality for humans (Bundibugyo virus) had little effect. These data indicate that Δ-peptides are functional components of ebolavirus proteomes. They join cathepsins and integrins as novel modulators of filovirus cell entry, might play important roles in pathogenesis, and could be exploited for the synthesis of powerful new antivirals.  相似文献   

11.

Background

Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way.

Methodology/Principal Findings

Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the µM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro.

Conclusions/Significance

These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax.  相似文献   

12.

Background

Recognition of microorganisms by the innate immune system is mediated by pattern recognition receptors, including Toll-like receptors and cytoplasmic RIG-I-like receptors. Chlamydia, which include several human pathogenic species, are obligate intracellular gram-negative bacteria that replicate in cytoplasmic vacuoles. The infection triggers a host response contributing to both bacterial clearance and tissue damage. For instance, type I interferons (IFN)s have been demonstrated to exacerbate the course of Chlamydial lung infections in mice.

Methods/Principal Findings

Here we show that Chlamydia pneumoniae induces expression of IFN-stimulated genes (ISG)s dependent on recognition by nucleotide-sensing Toll-like receptors and RIG-I-like receptors, localized in endosomes and the cytoplasm, respectively. The ISG response was induced with a delayed kinetics, compared to virus infections, and was dependent on bacterial replication and the bacterial type III secretion system (T3SS).

Conclusions/Significance

Activation of the IFN response during C. pneumoniae infection is mediated by intracellular nucleotide-sensing PRRs, which operate through a mechanism dependent on the bacterial T3SS. Strategies to inhibit the chlamydial T3SS may be used to limit the detrimental effects of the type I IFN system in the host response to Chlamydia infection.  相似文献   

13.

Background

The Venezuelan equine encephalitis (VEE) virus replicon system was used to produce virus-like replicon particles (VRP) packaged with a number of different VEE-derived glycoprotein (GP) coats. The GP coat is believed to be responsible for the cellular tropism noted for VRP and it is possible that different VEE GP coats may have different affinities for cells. We examined VRP packaged in four different VEE GP coats for their ability to infect cells in vitro and to induce both humoral and cellular immune responses in vivo.

Methodology/Principal Findings

The VRP preparations were characterized to determine both infectious units (IU) and genome equivalents (GE) prior to in vivo analysis. VRP packaged with different VEE GP coats demonstrated widely varying GE/IU ratios based on Vero cell infectivity. BALB/c mice were immunized with the different VRP based on equal GE titers and the humoral and cellular responses to the expressed HIV gag gene measured. The magnitude of the immune responses measured in mice revealed small but significant differences between different GP coats when immunization was based on GE titers.

Conclusions/Significance

We suggest that care should be taken when alternative coat proteins are used to package vector-based systems as the titers determined by cell culture infection may not represent accurate particle numbers and in turn may not accurately represent actual in vivo dose.  相似文献   

14.
15.

Background

The question of whether intact somatic cells committed to a specific differentiation fate, can be reprogrammed in vivo by exposing them to a different host microenvironment is a matter of controversy. Many reports on transdifferentiation could be explained by fusion with host cells or reflect intrinsic heterogeneity of the donor cell population.

Methodology/Principal Findings

We have tested the capacity of cloned populations of mouse and human muscle progenitor cells, committed to the myogenic pathway, to transdifferentiate to neurons, following their inoculation into the developing brain of newborn mice. Both cell types migrated into various brain regions, and a fraction of them gained a neuronal morphology and expressed neuronal or glial markers. Likewise, inoculated cloned human myogenic cells expressed a human specific neurofilament protein. Brain injected donor cells that expressed a YFP transgene controlled by a neuronal specific promoter, were isolated by FACS. The isolated cells had a wild-type diploid DNA content.

Conclusions

These and other results indicate a genuine transdifferentiation phenomenon induced by the host brain microenvironment and not by fusion with host cells. The results may potentially be relevant to the prospect of autologous cell therapy approach for CNS diseases.  相似文献   

16.

Background and Aims

The enterocytes have the potential to absorb noxious substances, such as microbial products, from the gut lumen. How the enterocytes process the substances to harmless materials is not fully understood. This study aims to elucidate the role of ubiquitin E3 ligase TNFAIP3 (TNFAIP3) in facilitating the degradation of endocytic microbial products in enterocytes.

Methods

Human intestinal epithelial cell line, HT-29 cells, was cultured to monolayers using as an in vitro model to observe the endocytosis and degradation of microbial products, Staphylococcal enterotoxin B (SEB) in epithelial cells. The RNA interference was employed to knock down the TNFAIP3 gene in HT-29 cells to observe the role of TNFAIP3 in the degradation of endocytic SEB. The role of TNFAIP3 in facilitating the endosome/lysosome fusion was observed by immunocytochemistry.

Results

Upon the absorption of SEB, the expression of TNFAIP3 was increased in HT-29 cells. Silencing the TNFAIP3 gene in HT-29 cells resulted in a large quantity of SEB to be transported across the HT-29 monolayers to the transwell basal chambers; the transportation was via the intracellular pathway. TNFAIP3 was required in the fusion of SEB-carrying endosomes and lysosomes.

Conclusions

TNFAIP3 plays a critical role in the degradation of endocytic SEB in enterocytes.  相似文献   

17.

Background and Aims

The carnivorous plant Venus flytrap (Dionaea muscipula) produces a rosette of leaves: each leaf is divided into a lower part called the lamina and an upper part, the trap, with sensory trigger hairs on the adaxial surface. The trap catches prey by very rapid closure, within a fraction of a second of the trigger hairs being touched twice. Generation of action potentials plays an important role in closure. Because electrical signals are involved in reduction of the photosynthetic rate in different plant species, we hypothesized that trap closure and subsequent movement of prey in the trap will result in transient downregulation of photosynthesis, thus representing the energetic costs of carnivory associated with an active trapping mechanism, which has not been previously described.

Methods

Traps were enclosed in a gas exchange cuvette and the trigger hairs irritated with thin wire, thus simulating insect capture and retention. Respiration rate was measured in darkness (RD). In the light, net photosynthetic rate (AN), stomatal conductance (gs) and intercellular CO2 concentration (ci) were measured, combined with chlorophyll fluorescence imaging. Responses were monitored in the lamina and trap separately.

Key Results

Irritation of trigger hairs resulted in decreased AN and increased RD, not only immediately after trap closure but also during the subsequent period when prey retention was simulated in the closed trap. Stomatal conductance remained stable, indicating no stomatal limitation of AN, so ci increased. At the same time, the effective quantum yield of photosystem II (ΦPSII) decreased transiently. The response was confined mainly to the digestive zone of the trap and was not observed in the lamina. Stopping mechanical irritation resulted in recovery of AN, RD and ΦPSII.

Conclusions

We put forward the first experimental evidence for energetic demands and carbon costs during insect trapping and retention in carnivorous plants, providing a new insight into the cost/benefit model of carnivory.  相似文献   

18.

Background

Individuality in the species composition of the vertebrate gut microbiota is driven by a combination of host and environmental factors that have largely been studied independently. We studied the convergence of these factors in a G10 mouse population generated from a cross between two strains to search for quantitative trait loci (QTLs) that affect gut microbiota composition or ileal Immunoglobulin A (IgA) expression in mice fed normal or high-fat diets.

Results

We found 42 microbiota-specific QTLs in 27 different genomic regions that affect the relative abundances of 39 taxa, including four QTL that were shared between this G10 population and the population previously studied at G4. Several of the G10 QTLs show apparent pleiotropy. Eight of these QTLs, including four at the same site on chromosome 9, show significant interaction with diet, implying that diet can modify the effects of some host loci on gut microbiome composition. Utilization patterns of IghV variable regions among IgA-specific mRNAs from ileal tissue are affected by 54 significant QTLs, most of which map to a segment of chromosome 12 spanning the Igh locus. Despite the effect of genetic variation on IghV utilization, we are unable to detect overlapping microbiota and IgA QTLs and there is no significant correlation between IgA variable pattern utilization and the abundance of any of the taxa from the fecal microbiota.

Conclusions

We conclude that host genetics and diet can converge to shape the gut microbiota, but host genetic effects are not manifested through differences in IgA production.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0552-6) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

RIG-I is a pivotal receptor that detects numerous RNA and DNA viruses. Thus, its defectiveness may strongly impair the host antiviral immunity. Remarkably, very little information is available on RIG-I single-nucleotide polymorphisms (SNPs) presenting a functional impact on the host response.

Methodology/Principal Findings

Here, we studied all non-synonymous SNPs of RIG-I using biochemical and structural modeling approaches. We identified two important variants: (i) a frameshift mutation (P229fs) that generates a truncated, constitutively active receptor and (ii) a serine to isoleucine mutation (S183I), which drastically inhibits antiviral signaling and exerts a down-regulatory effect, due to unintended stable complexes of RIG-I with itself and with MAVS, a key downstream adapter protein.

Conclusions/Significance

Hence, this study characterized P229fs and S183I SNPs as major functional RIG-I variants and potential genetic determinants of viral susceptibility. This work also demonstrated that serine 183 is a residue that critically regulates RIG-I-induced antiviral signaling.  相似文献   

20.

Background

Lipoprotein receptors from the low density lipoprotein (LDL) receptor family are multifunctional membrane proteins which can efficiently mediate endocytosis and thereby facilitate lipoprotein clearance from the plasma. The biggest member of this family, the LDL receptor-related protein 1 (LRP1), facilitates the hepatic uptake of triglyceride-rich lipoproteins (TRL) via interaction with apolipoprotein E (apoE). In contrast to the classical LDL degradation pathway, TRL disintegrate in peripheral endosomes, and core lipids and apoB are targeted along the endocytic pathway for lysosomal degradation. Notably, TRL-derived apoE remains within recycling endosomes and is then mobilized by high density lipoproteins (HDL) for re-secretion. The aim of this study is to investigate the involvement of LRP1 in the regulation of apoE recycling.

Principal Findings

Immunofluorescence studies indicate the LRP1-dependent trapping of apoE in EEA1-positive endosomes in human hepatoma cells. This processing is distinct from other LRP1 ligands such as RAP which is efficiently targeted to lysosomal compartments. Upon stimulation of HDL-induced recycling, apoE is released from LRP1-positive endosomes but is targeted to another, distinct population of early endosomes that contain HDL, but not LRP1. For subsequent analysis of the recycling capacity, we expressed the full-length human LRP1 and used an RNA interference approach to manipulate the expression levels of LRP1. In support of LRP1 determining the intracellular fate of apoE, overexpression of LRP1 significantly stimulated HDL-induced apoE recycling. Vice versa LRP1 knockdown in HEK293 cells and primary hepatocytes strongly reduced the efficiency of HDL to stimulate apoE secretion.

Conclusion

We conclude that LRP1 enables apoE to accumulate in an early endosomal recycling compartment that serves as a pool for the intracellular formation and subsequent re-secretion of apoE-enriched HDL particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号