共查询到20条相似文献,搜索用时 15 毫秒
1.
The essential folding and maturation process of proinsulin in β-cells is largely uncharacterized. To analyze this process, we improved approaches to immunoblotting, metabolic labeling, and data analysis used to determine the proportion of monomers and non-monomers and changes in composition of proinsulin in cells. We found the natural occurrence of a large proportion of proinsulin in various non-monomer states, i.e., aggregates, in normal mouse and human β-cells and a striking increase in the proportion of proinsulin non-monomers in Ins2(+/Akita) mice in response to a mutation (C96Y) in the insulin 2 (Ins2) gene. Proinsulin emerges in monomer and abundant dual-fate non-monomer states during nascent protein synthesis and shows heavy and preferential ATP/redox-sensitive disposal among secretory proteins during early post-translational processes. These findings support the preservation of proinsulin's aggregation-prone nature and low relative folding rate that permits the plentiful production of non-monomer forms with incomplete folding. Thus, in normal mouse/human β-cells, proinsulin's integrated maturation and degradation processes maintain a balance of natively and non-natively folded states, i.e., proinsulin homeostasis (PIHO). Further analysis discovered the high susceptibility of PIHO to cellular energy and calcium changes, endoplasmic reticulum (ER) and reductive/oxidative stress, and insults by thiol reagent and cytokine. These results expose a direct correlation between various extra-/intracellular influences and (a)typical integrations of proinsulin maturation and disposal processes. Overall, our findings demonstrated that the control of precursor maturation and disposal acts as an early regulative mechanism in normal insulin production, and its disorder is crucially linked to β-cell failure and diabetes pathogenesis. 相似文献
2.
3.
4.
5.
Gray JP Alavian KN Jonas EA Heart EA 《American journal of physiology. Endocrinology and metabolism》2012,303(2):E191-E199
NADPH is an important component of the antioxidant defense system and a proposed mediator in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. An increase in the NADPH/NADP(+) ratio has been reported to occur within minutes following the rise in glucose concentration in β-cells. However, 30 min following the increase in glucose, the total NADPH pool also increases through a mechanism not yet characterized. NAD kinase (NADK) catalyzes the de novo formation of NADP(+) by phosphorylation of NAD(+). NAD kinases have been shown to be essential for redox regulation, oxidative stress defense, and survival in bacteria and yeast. However, studies on NADK in eukaryotic cells are scarce, and the function of this enzyme has not been described in β-cells. We employed INS-1 832/13 cells, an insulin-secreting rat β-cell line, and isolated rodent islets to investigate the role of NADK in β-cell metabolic pathways. Adenoviral-mediated overexpression of NADK resulted in a two- to threefold increase in the total NADPH pool and NADPH/NADP(+) ratio, suggesting that NADP(+) formed by the NADK-catalyzed reaction is rapidly reduced to NADPH via cytosolic reductases. This increase in the NADPH pool was accompanied by an increase in GSIS in NADK-overexpressing cells. Furthermore, NADK overexpression protected β-cells against oxidative damage by the redox cycling agent menadione and reversed menadione-mediated inhibition of GSIS. Knockdown of NADK via shRNA exerted the opposite effect on all these parameters. These data suggest that NADK kinase regulates intracellular redox and affects insulin secretion and oxidative defense in the β-cell. 相似文献
6.
Per-Olof Berggren Birgitta Andersson Bo Hellman 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1982,720(3):320-328
Electrothermal atomic absorption spectroscopy was employed for measuring barium in β-cell-rich pancreatic islets microdissected from ob/ob-mice. Both the uptake and efflux of barium displayed two distinct phases. There was a 4-fold accumulation of barium into intracellular stores when its extracellular concentration was 0.26 mM. Unlike divalent cations with more extensive intracellular accumulation, the washout of Ba2+ was not inhibited by d-glucose. Ba2+ served as a substitute for Ca2+ both in maintaining the glucose metabolism after removal of extracellular Ca2+ and making it possible for glucose to stimulate insulin release. Furthermore, Ba2+ elicited insulin release in the absence of glucose and other secretagogues. The latter effect was reversible and was markedly potentiated under conditions known to increase the β-cell content of cyclic AMP. It is likely that the observed actions of Ba2+ are mediated by Ca2+, since Ca2+-dependent regulatory proteins, such as calmodulin, apparently cannot bind Ba2+ specifically. 相似文献
7.
Amyloid -protein precursor (ABPP) of Alzheimer's disease (AD) represents a family of proteins which includes the parent protein which generates a small (4 kD) fragment that self-assembles to form amyloid fibrils in AD. Thus, the normal and abnormal proteolysis of ABPP may be directly relevant to AD pathogenesis. We have examined the accumulation of ABPP in cultured rodent and human neuronal cell lines in the presence and absence of a battery of protease inhibitors using immunohistochemistry and Western blot analysis. Here we present evidence for a lysosomal pathway for the turnover of ABPP and discuss the relevance of these results to plaque pathology and abnormal ABPP immunostaining in AD.Special issue dedicated to Dr. Paola S. Timiras 相似文献
8.
Proper folding of the Na,K-ATPase β subunits followed by assembly with the α subunits is necessary for their export from the endoplasmic reticulum (ER). Here we examine roles of the ER lectin chaperone, calnexin, and non-lectin chaperone, BiP, in folding and quality control of the β(1) and β(2) subunits in Madin-Darby canine kidney cells. Short term prevention of glycan-calnexin interactions by castanospermine slightly increases ER retention of β(1), suggesting minor involvement of calnexin in subunit folding. However, both prolonged incubation with castanospermine and removal of N-glycosylation sites do not affect the α(1)-assembly or trafficking of β(1) but increase the amount of the β(1)-bound BiP, showing that BiP can compensate for calnexin in assisting β(1) folding. In contrast to β(1), prevention of either N-glycosylation or glycan-calnexin interactions abolishes the α(1)-assembly and export of β(2) from the ER despite increased β(2)-BiP binding. Mutations in the α(1)-interacting regions of β(1) and β(2) subunits impair α(1) assembly but do not affect folding of the β subunits tested by their sensitivity to trypsin. At the same time, these mutations increase the amount of β-bound BiP but not of β-bound calnexin and increase ER retention of both β-isoforms. BiP, therefore, prevents the ER export of folded but α(1)-unassembled β subunits. These α(1)-unassembled β subunits are degraded faster than α(1)-bound β subunits, preventing ER overload. In conclusion, folding of the β(1) and β(2) subunits is assisted predominantly by BiP and calnexin, respectively. Folded β(1) and β(2) either assemble with α(1) or bind BiP. The α(1)-bound β subunits traffic to the Golgi, whereas BiP-bound β subunits are retained and degraded in the ER. 相似文献
9.
A kinetic model involving synthesis of proinsulin in the rough endoplasmic reticulum, maturation through the Golgi apparatus
and granules, with conversion to insulin, is proposed to account for data on the amount of insulin and of proinsulin both
secreted during various time intervals and remaining in islets. Introducing three compartments for granules makes it possible
to account for the measurement of both hot (pulse labeled with tritiated leucine) and cold proinsulin and insulin over a period
of 21/2 hr under constant glucose. Data from islets from animals pretreated with tolbutamide are also presented and modeled.
The model is then expanded so that it can be successfully applied to available data on the effects of a period of glucose
deprivation on secretion of both hot and cold hormone. Parameters have essentially the same values, where they overlap, as
were obtained (Landahl and Grodsky, 1982Bull. math. Biol.
44, 399–410) from insulin secretion by perfused rat pancreas stimulated by a variety of temporal patterns of glucose concentration. 相似文献
10.
Guy A. Rutter Isabelle Leclerc Takashi Tsuboi Gabriela da Silva Xavier Frédérique Diraison Qingwen Qian 《Cell biochemistry and biophysics》2004,40(3):179-190
The mechanisms by which changes in glucose concentration regulate gene expression and insulin secretion in pancreatic islet β-cells are only partly understood. Here we describe the development of new technologies for examining these processes at the level of single living β-cells. We also present recent findings, made using these and other techniques, which implicate a role for adenosine 5′-monophosphate-activated protein kinase in glucose signaling in these cells. 相似文献
11.
Tsuneo Yamazaki Haruyasu Yamaguchi Takeshi Kawarabayashi Shunsaku Hirai 《Virchows Archiv. B, Cell pathology including molecular pathology》1993,63(1):173-180
The ultrastructural localization of amyloidβ/ A4 protein precursor (APP) was studied immunohistochemically in normal rat brains using antibodies against different portions
of APP. In cerebral cortical neurons and Purkinje cells, APP reaction products were located in the cytoplasm and on cell surface
membranes. Some Golgi apparatuses and rough endoplasmic reticulum also showed APP immunoreactivity on their membranes and
some vesicles near the trans face of the Golgi apparatuses were stained. In the neuropil of the cerebral cortex and the cerebellar
molecular layer, many cell processes, which surrounded synapses and were considered to be astrocytic, were APP-positive. Foot
processes around capillaries and subpial astrocytic processes were also immuno-positive. At the ultrastructural level, APP-positive
astrocytic processes were identified. 相似文献
12.
13.
In recent years, the electrical burst activity of the insulin releasing pancreatic β-cells has attracted many experimentalists
and theoreticians, largely because of its functional importance, but also because of the nonlinear nature of the burst activity.
The ATP-sensitive K+ channels are believed to play an important role in electrical activity and insulin release. In this paper, we show by computer
simulation how ATP and antidiabetic drugs can lengthen the plateau fraction of bursting and how these chemicals can increase
the intracellular Ca2+ level in the pancreatic β-cell. 相似文献
14.
K Nagino J Yokozawa Y Sasaki A Matsuda H Takeda S Kawata 《Biochemical and biophysical research communications》2012,425(2):266-272
Background &; aimsIt has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet β-cells in rats.MethodsMale Sprague–Dawley rats (10 weeks old) were divided into two groups: one underwent ligation of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of β-cells was assessed immunohistochemically using antibodies against insulin and Ki-67.ResultsDuring the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2 min (more than 1.4-fold; p < 0.05). Immunohistochemistry showed that the ratios of β-cell area/acinar cell area and β-cell area/islet area, and also β-cell proliferation, were significantly higher in the ligation group than in the sham group (p < 0.05, p < 0.01 and p < 0.01, respectively). The insulin content per unit wet weight of pancreas was also significantly increased in the ligation group (p < 0.05).ConclusionsIn rats with ligation of the mesenteric lymph duct, insulin secretion during the OGTT or IVGTT was higher, and the insulin content and β-cell proliferation in the pancreas were also increased. Our data show that mesenteric lymph duct flow has a role in glucose metabolism. 相似文献
15.
TRPM2 is a Ca2+-permeable non-selective cation channel that can be activated by adenosine dinucleotides, hydrogen peroxide, or intracellular Ca2+. The protein is expressed in a wide variety of cells, including neurons in the brain, immune cells, endocrine cells, and endothelial cells. This channel is also well expressed in β-cells in the pancreas. Insulin secretion from pancreatic β-cells is the primary mechanism by which the concentration of blood glucose is reduced. Thus, impairment of insulin secretion leads to hyperglycemia and eventually causes diabetes. Glucose is the principal stimulator of insulin secretion. The primary pathway involved in glucose-stimulated insulin secretion is the ATP-sensitive K+ (KATP) channel to voltage-gated Ca2+ channel (VGCC)-mediated pathway. Increases in the intracellular Ca2+ concentration are necessary for insulin secretion, but VGCC is not sufficient to explain [Ca2+]i increases in pancreatic β-cells and the resultant secretion of insulin. In this review, we focus on TRPM2 as a candidate for a [Ca2+]i modulator in pancreatic β-cells and its involvement in insulin secretion and development of diabetes. Although further analyses are needed to clarify the mechanism underlying TRPM2-mediated insulin secretion, TRPM2 could be a key player in the regulation of insulin secretion and could represent a new target for diabetes therapy. 相似文献
16.
Xiaofang Liu Fang Yan Hailei Yao Mingyang Chang Jinhua Qin Yali Li Yunfang Wang Xuetao Pei 《Cell and tissue research》2014,358(2):359-369
Cell-cell contacts and interactions between pancreatic β-cells and/or other cell populations within islets are essential for cell survival, insulin secretion, and functional synchronization. Three-dimensional (3D) culture systems supply the ideal microenvironment for islet-like cluster formation and functional maintenance. However, the underlying mechanisms remain unclear. In this study, mouse insulinoma 6 (MIN6) cells were cultured in a rotating 3D culture system to form islet-like aggregates. Glucose-stimulated insulin secretion (GSIS) and the RhoA/ROCK pathway were investigated. In the 3D-cultured MIN6 cells, more endocrine-specific genes were up-regulated, and GSIS was increased to a greater extent than in cells grown in monolayers. RhoA/ROCK inactivation led to F-actin remodeling in the MIN6 cell aggregates and greater insulin exocytosis. The gap junction protein, connexin 36 (Cx36), was up-regulated in MIN6 cell aggregates and RhoA/ROCK-inactivated monolayer cells. GSIS dramatically decreased when Cx36 was knocked down by short interfering RNA and could not be reversed by RhoA/ROCK inactivation. Thus, the RhoA/ROCK signaling pathway is involved in insulin release through the up-regulation of Cx36 expression in 3D-cultured MIN6 cells. 相似文献
17.
《Gene》1996,170(1):107-112
An α-factor leader/insulin precursor fusion protein was produced in Saccharomyces cerevisiae and metabolically labeled in order to analyse the efficiency of maturation and secretion. A substantial fraction of the secreted material was found in a hyperglycosylated unprocessed form, indicating incomplete Kex2p endopeptidase maturation. Introduction of a spacer peptide (EAEAEAK) after the dibasic Kex2p site, creating a N-terminal extension of the insulin precursor, greatly increased the Kex2p catalytic efficiency and the fermentation yield of insulin precursor. The N-terminal extension features a Lys to allow subsequent proteolytic removal by trypsin or the Achromobacter lyticus Lys-specific protease. Dipeptidyl aminopeptidase A (DPAPA) activity removing Glu-Ala dipeptides from the extension was inhibited by adding a Glu N-terminally to the extension. Unexpectedly, this modified N-terminal extension (EEAEAEAK) was partially cleaved after the Lys during fermentation. This monobasic proteolytic activity was demonstrated to be associated with Yap3p. Yap3p cleavage could be prevented by insertion of a Pro before the Lys (EEAEAEAPK) 相似文献
18.
19.
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) plays a crucial role in the endocrine system. The present study aimed to investigate the effect of PACAP38 on insulin secretion and the underlying mechanism in rat pancreatic β-cells. The insulin secretion results showed that PACAP38 stimulated insulin secretion in a glucose- and dose-dependent manner. The insulinotropic effect was mediated by PAC1 receptor, but not by VPAC1 and VPAC2 receptors. Inhibition of adenylyl cyclase and protein kinase A suppressed PACAP38-augmented insulin secretion. Glucose-regulated insulin secretion is dependent on a series of electrophysiological activities. Current-clamp technology suggested that PACAP38 prolonged action potential duration. Voltage-clamp recordings revealed that PACAP38 blocked voltage-dependent potassium currents, and this effect was reversed by inhibition of PAC1 receptor, adenylyl cyclase, or protein kinase A. Activation of Ca2+ channels by PACAP38 was also observed, which could be antagonized by the PAC1 receptor antagonist. In addition, calcium-imaging analysis indicated that PACAP38 increased intracellular Ca2+ concentration, which was decreased by PAC1 receptor antagonist. These findings demonstrate that PACAP38 stimulates glucose-induced insulin secretion mainly by acting on PAC1 receptor, inhibiting voltage-dependent potassium channels, activating Ca2+ channels and increasing intracellular Ca2+ concentration. Further, PACAP blocks voltage-dependent potassium currents via the adenylyl cyclase/protein kinase A signaling pathway. 相似文献
20.
Yuko Iwasaki Shigeru Yatoh 《Biochemical and biophysical research communications》2009,378(3):545-27914
Transgenic mice expressing nuclear sterol regulatory element-binding protein-1a under the control of the insulin promoter were generated to determine the role of SREBP-1a in pancreatic β-cells. Only low expressors could be established, which exhibited mild hyperglycemia, impaired glucose tolerance, and reduced plasma insulin levels compared to C57BL/6 controls. The islets isolated from the transgenic mice were fewer and smaller, and had decreased insulin content and unaltered glucagon staining. Both glucose- and potassium-stimulated insulin secretions were decreased. The transgenic islets consistently expressed genes for fatty acids and cholesterol synthesis, resulting in accumulation of triglycerides but not cholesterol. PDX-1, ΒΕΤΑ2, MafA, and IRS-2 were suppressed, partially explaining the loss and dysfunction of β-cell mass. The transgenic mice on a high fat/high sucrose diet still exhibited impaired insulin secretion and continuous β-cell growth defect. Therefore, nuclear SREBP-1a, even at a low level, strongly disrupts β-cell mass and function. 相似文献