共查询到20条相似文献,搜索用时 10 毫秒
1.
A repetitive protein essential for the flagellum attachment zone filament structure and function in Trypanosoma brucei 总被引:1,自引:0,他引:1
The flagellum is attached along the length of the cell body in the protozoan parasite Trypanosoma brucei and is a defining morphological feature of this parasite. The flagellum attachment zone (FAZ) is a complex structure and has been characterised morphologically as comprising a FAZ filament structure and the specialised microtubule quartet (MtQ) plus the specialised areas of flagellum: plasma membrane attachment. Unfortunately, we have no information as to the molecular identity of the FAZ filament components. Here, by screening an expression library with the monoclonal antibody L3B2 which identifies the FAZ filament we identify a novel repeat containing protein FAZ1. It is kinetoplastid-specific and provides the first molecular component of the FAZ filament. Knockdown of FAZ1 by RNA interference (RNAi) results in the assembly of a compromised FAZ and defects in flagellum attachment and cytokinesis in procyclic trypanosomes. The complexity of FAZ structure and assembly is revealed by the use of other monoclonal antibody markers illustrating that FAZ1 is only one protein of a complex structure. The cytokinesis defects provide further evidence for the role of an attached flagellum in cellular morphogenesis in these trypanosomes. 相似文献
2.
Trypanosomes and Leishmanias are important human parasites whose cellular architecture is centred on the single flagellum. In trypanosomes, this flagellum is attached to the cell along a complex flagellum attachment zone (FAZ), comprising flagellar and cytoplasmic components, the integrity of which is required for correct cell morphogenesis and division. The cytoplasmic FAZ cytoskeleton is conspicuously associated with a sheet of endoplasmic reticulum termed the 'FAZ ER'. In the present work, 3D electron tomography of bloodstream form trypanosomes was used to clarify the nature of the FAZ ER. We also identified TbVAP, a T. brucei protein whose knockdown by RNAi in procyclic form cells leads to a dramatic reduction in the FAZ ER, and in the ER associated with the flagellar pocket. TbVAP is an orthologue of VAMP-associated proteins (VAPs), integral ER membrane proteins whose mutation in humans has been linked to familial motor neuron disease. The localisation of tagged TbVAP and the phenotype of TbVAP RNAi in procyclic form trypanosomes are consistent with a function for TbVAP in the maintenance of sub-populations of the ER associated with the FAZ and the flagellar pocket. Nevertheless, depletion of TbVAP did not affect cell viability or cell cycle progression. 相似文献
3.
The single flagellum of the protozoan parasite Trypanosoma brucei is attached along the length of the cell body by a complex structure that requires the FLA1 protein. We show here that inhibition of FLA1 expression by RNA interference in procyclic trypanosomes causes flagellar detachment and prevents cytokinesis. Despite being unable to divide, these cells undergo mitosis and develop a multinucleated phenotype. The Trypanosoma cruzi FLA1 homolog, GP72, is unable to complement either the flagellar detachment or cytokinesis defects in procyclic T. brucei that have been depleted of FLA1 by RNA interference. Instead, GP72 itself caused flagellar detachment when expressed in T. brucei. In contrast to T. brucei cells depleted of FLA1, procyclic T. brucei expressing GP72 continued to divide despite having detached flagella, demonstrating that flagellar attachment is not absolutely necessary for cytokinesis. We have also identified a FLA1-related gene (FLA2) whose sequence is similar but not identical to FLA1. Inhibition of FLA1 and FLA2 expression in bloodstream T. brucei caused flagellar detachment and blocked cytokinesis but did not inhibit mitosis. These experiments demonstrate that the FLA proteins are essential and suggest that in procyclic T. brucei, the FLA1 protein has separable functions in flagellar attachment and cytokinesis. 相似文献
4.
Polo-like kinase is expressed in S/G2/M phase and associated with the flagellum attachment zone in both procyclic and bloodstream forms of Trypanosoma brucei 下载免费PDF全文
Trypanosoma brucei, the etiologic agent of African sleeping sickness, divides into insect (procyclic) and bloodstream forms. These two forms are subject to distinct cell cycle regulations, with cytokinesis controlled primarily by basal body/kinetoplast segregation in the procyclic form but by mitosis in the bloodstream form. Polo-like kinases (PLKs), known to play essential roles in regulating both mitosis and cytokinesis among eukaryotes, have a homologue in T. brucei, TbPLK, which regulates only cytokinesis. In our previous study, overexpressed triply hemagglutinin-tagged TbPLK (TbPLK-3HA) in the procyclic form localized to a mid-dorsal point and the anterior tip of the cell along the flagellum attachment zone (FAZ). In our current study, TbPLK-3HA expressed at the endogenous level was identified at the same dorsal location of both procyclic and bloodstream forms, albeit it was no longer detectable at the anterior tip of the cell. Endogenously expressed TbPLK fused with an enhanced yellow fluorescent protein (EYFP) localized to the same dorsal location along the FAZs in living procyclic and bloodstream cells. Fluorescence-activated cell sorter analysis of hydroxyurea-synchronized procyclic cells revealed that TbPLK-EYFP emerges during S phase, persists through G(2)/M phase, and vanishes in G(1) phase. An indicated TbPLK-EYFP association with the FAZs of G(2)/M cells may thus represent a timely localization to a potential initiation site of cytokinesis, which agrees with the recognized role of TbPLK in cytokinetic initiation. 相似文献
5.
The flagellum of Trypanosoma brucei: new tricks from an old dog 总被引:1,自引:0,他引:1
African trypanosomes, i.e. Trypanosoma brucei and related sub-species, are devastating human and animal pathogens that cause significant human mortality and limit sustained economic development in sub-Saharan Africa. T. brucei is a highly motile protozoan parasite and coordinated motility is central to both disease pathogenesis in the mammalian host and parasite development in the tsetse fly vector. Therefore, understanding unique aspects of the T. brucei flagellum may uncover novel targets for therapeutic intervention in African sleeping sickness. Moreover, studies of conserved features of the T. brucei flagellum are directly relevant to understanding fundamental aspects of flagellum and cilium function in other eukaryotes, making T. brucei an important model system. The T. brucei flagellum contains a canonical 9+2 axoneme, together with additional features that are unique to kinetoplastids and a few closely-related organisms. Until recently, much of our knowledge of the structure and function of the trypanosome flagellum was based on analogy and inference from other organisms. There has been an explosion in functional studies in T. brucei in recent years, revealing conserved as well as novel and unexpected structural and functional features of the flagellum. Most notably, the flagellum has been found to be an essential organelle, with critical roles in parasite motility, morphogenesis, cell division and immune evasion. This review highlights recent discoveries on the T. brucei flagellum. 相似文献
6.
Galetović A Souza RT Santos MR Cordero EM Bastos IM Santana JM Ruiz JC Lima FM Marini MM Mortara RA da Silveira JF 《PloS one》2011,6(11):e27634
Background
Trypanosoma cruzi has a single flagellum attached to the cell body by a network of specialized cytoskeletal and membranous connections called the flagellum attachment zone. Previously, we isolated a DNA fragment (clone H49) which encodes tandemly arranged repeats of 68 amino acids associated with a high molecular weight cytoskeletal protein. In the current study, the genomic complexity of H49 and its relationships to the T. cruzi calpain-like cysteine peptidase family, comprising active calpains and calpain-like proteins, is addressed. Immunofluorescence analysis and biochemical fractionation were used to demonstrate the cellular location of H49 proteins.Methods and Findings
All of H49 repeats are associated with calpain-like sequences. Sequence analysis demonstrated that this protein, now termed H49/calpain, consists of an amino-terminal catalytic cysteine protease domain II, followed by a large region of 68-amino acid repeats tandemly arranged and a carboxy-terminal segment carrying the protease domains II and III. The H49/calpains can be classified as calpain-like proteins as the cysteine protease catalytic triad has been partially conserved in these proteins. The H49/calpains repeats share less than 60% identity with other calpain-like proteins in Leishmania and T. brucei, and there is no immunological cross reaction among them. It is suggested that the expansion of H49/calpain repeats only occurred in T. cruzi after separation of a T. cruzi ancestor from other trypanosomatid lineages. Immunofluorescence and immunoblotting experiments demonstrated that H49/calpain is located along the flagellum attachment zone adjacent to the cell body.Conclusions
H49/calpain contains large central region composed of 68-amino acid repeats tandemly arranged. They can be classified as calpain-like proteins as the cysteine protease catalytic triad is partially conserved in these proteins. H49/calpains could have a structural role, namely that of ensuring that the cell body remains attached to the flagellum by connecting the subpellicular microtubule array to it. 相似文献7.
《Gene》1998,207(1):71-77
The polo-like protein kinase gene family (PLKs) encodes proteins which are involved in the control of exit from mitosis in higher eukaryotes. We have cloned and analysed a polo-like kinase, tbplk, from an evolutionary divergent eukaryote, Trypanosoma brucei. The gene encodes a 767 amino acid protein of predicted size 86.8 kDa with 50.4% identity to mammalian PLKs over the protein kinase catalytic domain and it possesses a conserved motif, the `polo-box', which is found in all PLKs. Phylogenetic analysis demonstrates that this gene is clearly a member of the PLK family, although it has some distinctive features such as a large C-terminal insertion when compared with mammalian PLKs. The gene is single copy and expressed in both bloodstream and procyclic stage trypanosomes. Sequencing of tbplk from a number of trypanosome isolates reveals a length polymorphism in a run of asparagine residues within the coding region. The presence of PLKs in a wide range of organisms, including such a primitive organism as T. brucei, suggests that PLKs may have a key role in the function of the cell cycle. 相似文献
8.
9.
Absalon S Kohl L Branche C Blisnick T Toutirais G Rusconi F Cosson J Bonhivers M Robinson D Bastin P 《PloS one》2007,2(5):e437
To perform their multiple functions, cilia and flagella are precisely positioned at the cell surface by mechanisms that remain poorly understood. The protist Trypanosoma brucei possesses a single flagellum that adheres to the cell body where a specific cytoskeletal structure is localised, the flagellum attachment zone (FAZ). Trypanosomes build a new flagellum whose distal tip is connected to the side of the old flagellum by a discrete structure, the flagella connector. During this process, the basal body of the new flagellum migrates towards the posterior end of the cell. We show that separate inhibition of flagellum assembly, base-to-tip motility or flagella connection leads to reduced basal body migration, demonstrating that the flagellum contributes to its own positioning. We propose a model where pressure applied by movements of the growing new flagellum on the flagella connector leads to a reacting force that in turn contributes to migration of the basal body at the proximal end of the flagellum. 相似文献
10.
Oberholzer M Langousis G Nguyen HT Saada EA Shimogawa MM Jonsson ZO Nguyen SM Wohlschlegel JA Hill KL 《Molecular & cellular proteomics : MCP》2011,10(10):M111.010538
The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling. 相似文献
11.
Höög JL Bouchet-Marquis C McIntosh JR Hoenger A Gull K 《Journal of structural biology》2012,178(2):189-198
Trypanosoma brucei is a uni-cellular protist that causes African sleeping sickness. These parasites have a flagellum that is attached to the cell body and is indispensible for its motility. The flagellum consists of a canonical 9+2 axoneme and a paraflagellar rod (PFR), an intricate tripartite, fibrous structure that is connected to the axoneme. In this paper we describe results from cryo-electron tomography of unperturbed flagella. This method revealed novel structures that are likely involved in attaching the flagellum to the cell. We also show the first cryo-electron tomographic images of a basal body in situ, revealing electron dense structures inside its triplet microtubules. Sub-tomogram averaging of the PFR revealed that its distal region is organized as an orthorhombic crystal. 相似文献
12.
Nucleoside diphosphate kinase (NDPK) is a highly conserved, multifunctional enzyme. Its originally described function is the phosphorylation of nucleoside diphosphates to the corresponding triphosphates, using ATP as the phosphate donor and a high-energy phosphorylated histidine residue as the reaction intermediate. More recently, a host of additional functions of NDPK have been discovered. Some of these correlate with the capacity of NDPK to transphosphorylate other proteins, in a manner reminiscent of bacterial two-component systems. Other functions may be mediated by direct DNA-binding of NDPK.This study describes the identification of NDPK from the parasitic protozoon Trypanosoma brucei. The genome of this major disease agent contains a single gene for NDPK. The predicted amino acid sequence of the trypanosomal enzyme is highly conserved with respect to all other species. The protein is constitutively expressed and is present in procyclic and in bloodstream forms. Immunofluorescence and immuno-electron microscopy demonstrate that trypanosomal NDPK (TbNDPK) is predominantly localized in the cell nucleus. Histidine phosphorylation of TbNDPK is essentially resistant to the experimental compound LY266500, a potent inhibitor of histidine phosphorylation of trypanosomal succinyl coenzyme A synthase. 相似文献
13.
Concanavalin A (Con A) kills procyclic (insect) forms of Trypanosoma brucei by binding to N-glycans on EP-procyclin, a major surface glycosyl phosphatidylinositol (GPI)-anchored protein which is rich in Glu-Pro repeats. We have previously isolated and studied two procyclic mutants (ConA 1-1 and ConA 4-1) that are more resistant than wild-type (WT) to Con A killing. Although both mutants express the same altered oligosaccharides compared to WT cells, ConA 4-1 is considerably more resistant to lectin killing than is ConA 1-1. Thus, we looked for other alterations to account for the differences in sensitivity. Using mass spectrometry, together with chemical and enzymatic treatments, we found that both mutants express types of EP-procyclin that are either poorly expressed or not found at all in WT cells. ConA 1-1 expresses mainly EP1-3, a novel procyclin that contains 18 EP repeats, is partially N-glycosylated, and bears hybrid-type glycans. On the other hand, ConA 4-1 cells express almost exclusively EP2-3, a novel non-glycosylated procyclin isoform with 23 EP repeats and no site for glycosylation. The predominance of EP2-3 in ConA 4-1 cells explains their high resistance to ConA killing. Thus, switching the procyclin repertoire, a process that could be relevant to parasite development in the insect vector, modulates the sensitivity of trypanosomes to cytotoxic lectins. 相似文献
14.
Rocha GM Brandão BA Mortara RA Attias M de Souza W Carvalho TM 《Journal of structural biology》2006,154(1):89-99
The flagellar attachment zone (FAZ) is an adhesion region of Trypanosoma cruzi epimastigote forms where the flagellum emerges from the flagellar pocket and remains attached to the cell body. This region shows a junctional complex which is formed by a linear series of apposed macular structures that are separated by amorphous material and clusters of intramembranous particles. Two protein groups appear to be important in the FAZ region: a membrane glycoprotein of 72kDa and several high molecular weight proteins. To gain a better understanding of the FAZ region, we compared wild-type Y strain T. cruzi epimastigotes with a mutant cell in which the 72-kDa surface glycoprotein (Gp72), involved in cell body-flagellum adhesion, had been deleted by target gene replacement. Using immunofluorescence confocal microscopy and electron microscopy techniques to analyze the FAZ region the results suggest that, in the absence of Gp72, other proteins involved in the formation of FAZ remain concentrated in the flagellar pocket region. The analysis of a 3-D reconstruction model of wild-type epimastigotes showed that the endoplasmic reticulum and mitochondrion are in intimate association with FAZ, in contrast to the null mutant cells where the endoplasmic reticulum was not visualized. 相似文献
15.
R J Gilbert R A Klein 《Comparative biochemistry and physiology. B, Comparative biochemistry》1984,78(3):595-599
Pyruvate kinase activity in Trypanosoma brucei brucei is stimulated in the presence of L-carnitine and is inhibited by acetyl CoA, ATP or the ATP-Mg2+ complex. Increased pyruvate kinase activity is associated with stimulation of ATP synthesis in the presence of L-carnitine. There is evidence that carnitine stimulates pyruvate kinase activity indirectly by removing the inhibitory modulator acetyl CoA as a result of the carnitine acetyl transferase (CAT) also present in the trypanosomes. 相似文献
16.
Nonvariant antigens limited to bloodstream forms of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense 总被引:2,自引:0,他引:2
D A Beat H A Stanley L Choromański A B MacDonald B M Honigberg 《The Journal of protozoology》1984,31(4):541-548
The presence of nonvariant antigens (NVAs) limited to bloodstream forms of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense was demonstrated for the first time by immunodiffusion and immunoelectrophoresis. Noncloned and cloned populations were employed in preparation of polyclonal antisera in rabbits and of antigens to be used in the immunologic reactions. The NVAs could be shown best in systems in which hyperimmune rabbit sera (adsorbed with procyclic forms to eliminate antibodies against antigens common to bloodstream form and procyclic stages) were reacted with trypanosomes characterized by heterologous variant-specific antigens (VSAs). The NVAs demonstrated in this study are very likely different from the common parts of VSAs. As has been suggested by experiments with living trypanosomes, at least a part of the NVAs appears to be located on the surface of the bloodstream forms. In these experiments involving the quantitative indirect fluorescent antibody test, the amount of fluorescence recorded for the heterologous system, i.e. ETat 5 trypanosomes incubated with anti-AmTat 1.1 serum, equalled approximately 3.0% of the fluorescence emitted by the AmTat 1.1 bloodstream forms treated with their homologous antiserum. Evidently, only small amounts of NVAs are present on the surfaces of T. brucei bloodstream forms. In addition to the NVAs, the electrophoresis results suggested the presence of antigenic differences between procyclic stages belonging to different T. brucei stocks. 相似文献
17.
DAVID A. BEAT HAROLD A. STANLEY LESZEK CHOROMASKL A. BRUCE MacDONALD B. M. HONIGBERG 《The Journal of eukaryotic microbiology》1984,31(4):541-548
ABSTRACT. The presence of nonvariant antigens (NVAs) limited to bloodstream forms of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense was demonstrated for the first time by immunodiffusion and Immunoelectrophoresis. Noncloned and cloned populations were employed in preparation of polyclonal antisera in rabbits and of antigens to be used in the immunologic reactions. The NVAs could be shown best in systems in which hyperimmune rabbit sera (adsorbed with procyclic forms to eliminate antibodies against antigens common to bloodstream form and procyclic stages) were reacted with trypanosomes characterized by heterologous variant-specific antigens (VSAs). The NVAs demonstrated in this study are very likely different from the common parts of VSAs. As has been suggested by experiments with living trypanosomes, at least a part of the NVAs appears to be located on the surface of the bloodstream forms. In these experiments involving the quantitative indirect fluorescent antibody test, the amount of fluorescence recorded for the heterologous system, i.e. ETat 5 trypanosomes incubated with anti-AmTat 1.1 serum, equalled ~3.0% of the fluorescence emitted by the AmTat 1.1 bloodstream forms treated with their homologous antiserum. Evidently, only small amounts of NVAs are present on the surfaces of T. brucei bloodstream forms. In addition to the NVAs, the electrophoresis results suggested the presence of antigenic differences between procyclic stages belonging to different T. brucei stocks. 相似文献
18.
Cell cycle regulation and novel structural features of thymidine kinase,an essential enzyme in Trypanosoma brucei 下载免费PDF全文
Maria Valente Jennifer Timm Víctor M. Castillo‐Acosta Luis M. Ruiz‐Pérez Tom Balzarini Joanne E. Nettleship Louise E. Bird Heather Rada Keith S. Wilson Dolores González‐Pacanowska 《Molecular microbiology》2016,102(3):365-385
Thymidine kinase (TK) is a key enzyme in the pyrimidine salvage pathway which catalyzes the transfer of the γ‐phosphate of ATP to 2′‐deoxythymidine (dThd) forming thymidine monophosphate (dTMP). Unlike other type II TKs, the Trypanosoma brucei enzyme (TbTK) is a tandem protein with two TK homolog domains of which only the C‐terminal one is active. In this study, we establish that TbTK is essential for parasite viability and cell cycle progression, independently of extracellular pyrimidine concentrations. We show that expression of TbTK is cell cycle regulated and that depletion of TbTK leads to strongly diminished dTTP pools and DNA damage indicating intracellular dThd to be an essential intermediate metabolite for the synthesis of thymine‐derived nucleotides. In addition, we report the X‐ray structure of the catalytically active domain of TbTK in complex with dThd and dTMP at resolutions up to 2.2 Å. In spite of the high conservation of the active site residues, the structures reveal a widened active site cavity near the nucleobase moiety compared to the human enzyme. Our findings strongly support TbTK as a crucial enzyme in dTTP homeostasis and identify structural differences within the active site that could be exploited in the process of rational drug design. 相似文献
19.
20.
Pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) from Trypanosoma brucei has been partially purified by carboxymethylcellulose chromatography, and gel filtration. The enzyme is unstable in aqueous solution and requires the presence of a thiol protecting reagent as well as glycerol for the maintenance of activity. Dithiothreitol activates as well as stabilizes the enzyme. Phosphoenolpyruvate allosterically activates trypanosome pyruvate kinase whereas hyperbolic kinetics are found when ADP is the variable substrate. Mg2+ or Mn2+ ions and a monovalent cation are essential for enzyme activity. Fructose 1,6-diphosphate acts as a heterotropic allosteric activator, markedly decreasing the S0.5 value for phosphoenolpyruvate from 1.34 to 0.25 mm at 1 mm fructose 1,6-diphosphate and transforms the phosphoenolpyruvate saturation curve from a sigmoidal to a hyperbolic form. The enzyme has a pH optimum of 6.5–7.0 and a molecular weight of 270,000 ± 27,000 as estimated by gel chromatography. Purine nucleotides are the preferred coenzymes for the reaction, having much lower Km values than the pyrimidine nucleotides. The possible role of pyruvate kinase in the regulation of glycolysis in T. brucei is discussed. 相似文献