首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Human malaria infections resulting from Plasmodium falciparum have become increasingly difficult to treat due to the emergence of drug-resistant parasites. The P. falciparum purine salvage enzyme purine nucleoside phosphorylase (PfPNP) is a potential drug target. Previous studies, in which PfPNP was targeted by transition state analogue inhibitors, found that those inhibiting human PNP and PfPNPs killed P. falciparum in vitro. However, many drugs have off-target interactions, and genetic evidence is required to demonstrate single target action for this class of potential drugs. We used targeted gene disruption in P. falciparum strain 3D7 to ablate PNP expression, yielding transgenic 3D7 parasites (Deltapfpnp). Lysates of the Deltapfpnp parasites showed no PNP activity, but activity of another purine salvage enzyme, adenosine deaminase (PfADA), was normal. When compared with wild-type 3D7, the Deltapfpnp parasites showed a greater requirement for exogenous purines and a severe growth defect at physiological concentrations of hypoxanthine. Drug assays using immucillins, specific transition state inhibitors of PNP, were performed on wild-type and Deltapfpnp parasites. The Deltapfpnp parasites were more sensitive to PNP inhibitors that bound hPNP tighter and less sensitive to MT-ImmH, an inhibitor with 100-fold preference for PfPNP over hPNP. The results demonstrate the importance of purine salvage in P. falciparum and validate PfPNP as the target of immucillins.  相似文献   

2.
Immucillins are logically designed transition-state analogue inhibitors of mammalian purine nucleoside phosphorylase (PNP) that induce purine-less death of Plasmodium falciparum in cultured erythrocytes (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Schramm, V. L., and Kim, K. (2002) J. Biol. Chem. 277, 3226-3231). PNP is present at high levels in human erythrocytes and in P. falciparum, but the Plasmodium enzyme has not been characterized. A search of the P. falciparum genome data base yielded an open reading frame similar to the PNP from Escherichia coli. PNP from P. falciparum (P. falciparum PNP) was cloned, overexpressed in E. coli, purified, and characterized. The primary amino acid sequence has 26% identity with E. coli PNP, has 20% identity with human PNP, and is phylogenetically unique among known PNPs with equal genetic distance between PNPs and uridine phosphorylases. Recombinant P. falciparum PNP is catalytically active for inosine and guanosine but is less active for uridine. The immucillins are powerful inhibitors of P. falciparum PNP. Immucillin-H is a slow onset tight binding inhibitor with a K(i)* value of 0.6 nm. Eight related immucillins are also powerful inhibitors with dissociation constants from 0.9 to 20 nm. The K(m)/K(i)* value for immucillin-H is 9000, making this inhibitor the most powerful yet reported for P. falciparum PNP. The PNP from P. falciparum differs from the human enzyme by a lower K(m) for inosine, decreased preference for deoxyguanosine, and reduced affinity for the immucillins, with the exception of 5'-deoxy-immucillin-H. These properties of P. falciparum PNP are consistent with a metabolic role in purine salvage and provide an explanation for the antibiotic effect of the immucillins on P. falciparum cultured in human erythrocytes.  相似文献   

3.
Plasmodium falciparum is responsible for the majority of life-threatening cases of malaria. Plasmodia species cannot synthesize purines de novo, whereas mammalian cells obtain purines from de novo synthesis or by purine salvage. Hypoxanthine is proposed to be the major source of purines for P. falciparum growth. It is produced from inosine phosphorolysis by purine nucleoside phosphorylase (PNP). Immucillins are powerful transition state analogue inhibitors of mammalian PNP and also inhibit P. falciparum PNP as illustrated in the accompanying article (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Kim, K., and Schramm, V. L. (2002) J. Biol. Chem. 277, 3219-3225). This work tests the hypothesis that erythrocyte and P. falciparum PNP are essential elements for growth and survival of the parasite in culture. Immucillin-H reduces the incorporation of inosine but not hypoxanthine into nucleic acids of P. falciparum and kills P. falciparum cultured in human erythrocytes with an IC(50) of 35 nm. Growth inhibition by Imm-H is reversed by the addition of hypoxanthine but not inosine, demonstrating the metabolic block at PNP. The concentration of Imm-H required for inhibition of parasite growth varies as a function of culture hematocrit, reflecting stoichiometric titration of human erythrocyte PNP by the inhibitor. Human and P. falciparum PNPs demonstrate different specificity for inhibition by immucillins, with the 2'-deoxy analogues showing marked preference for the human enzyme. The IC(50) values for immucillin analogue toxicity to P. falciparum cultures indicate that inhibition of PNP in both the erythrocytes and the parasite is necessary to induce a purine-less death.  相似文献   

4.
Human purine nucleoside phosphorylase (huPNP) is essential for human T-cell division by removing deoxyguanosine and preventing dGTP imbalance. Plasmodium falciparum expresses a distinct PNP (PfPNP) with a unique substrate specificity that includes 5'-methylthioinosine. The PfPNP functions both in purine salvage and in recycling purine groups from the polyamine synthetic pathway. Immucillin-H is an inhibitor of both huPNP and PfPNPs. It kills activated human T-cells and induces purine-less death in P. falciparum. Immucillin-H is a transition state analogue designed to mimic the early transition state of bovine PNP. The DADMe-Immucillins are second generation transition state analogues designed to match the fully dissociated transition states of huPNP and PfPNP. Immucillins, DADMe-Immucillins and related analogues are compared for their energetic interactions with human and P. falciparum PNPs. Immucillin-H and DADMe-Immucillin-H are 860 and 500 pM inhibitors against P. falciparum PNP but bind human PNP 15-35 times more tightly. This common pattern is a result of kcat for huPNP being 18-fold greater than kcat for PfPNP. This energetic binding difference between huPNP and PfPNP supports the k(chem)/kcat binding argument for transition state analogues. Preferential PfPNP inhibition is gained in the Immucillins by 5'-methylthio substitution which exploits the unique substrate specificity of PfPNP. Human PNP achieves part of its catalytic potential from 5'-OH neighboring group participation. When PfPNP acts on 5'-methylthioinosine, this interaction is not possible. Compensation for the 5'-OH effect in the P. falciparum enzyme is provided by improved leaving group interactions with Asp206 as a general acid compared with Asn at this position in huPNP. Specific atomic modifications in the transition state analogues cause disproportionate binding differences between huPNP and PfPNPs and pinpoint energetic binding differences despite similar transition states.  相似文献   

5.
The genetic deficiency of human PNP causes a specific immunodeficiency by inducing apoptosis in dividing T-cells. Powerful inhibitors of PNP have been designed from the experimental determination of the transition state structure of PNPs. The Immucillins are transition state analogue inhibitors with Kd values as low as 7 pM. In the presence of deoxyguanosine the Immucillins kill activated human T-cells but not other cell types. The Immucillins are orally available and of low toxicity to mice. Immucillins also inhibit PNP from Plasmodium falciparum. Parasites cultured in human erythrocytes are killed by purine starvation in the presence of Immucillins and can be rescued by hypoxanthine.  相似文献   

6.
Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum.  相似文献   

7.
Recent studies have shown that Plasmodium falciparum is sensitive to a purine salvage block at purine nucleoside phosphorylase (PNP) and that human PNP is a target for T-cell proliferative diseases. Specific tight-binding inhibitors might be designed on the basis of specific PNP transition state structures. Kinetic isotope effects (KIEs) were measured for arsenolysis of inosine catalyzed by P. falciparum and human purine nucleoside phosphorylases. Intrinsic KIEs from [1'-(3)H]-, [2'-(3)H]-, [1'-(14)C]-, [9-(15)N]-, and [5'-(3)H]inosines were 1.184 +/- 0.004, 1.031 +/- 0.004, 1.002 +/- 0.006, 1.029 +/- 0.006, and 1.062 +/- 0.002 for the human enzyme and 1.116 +/- 0.007, 1.036 +/- 0.003, 0.996 +/- 0.006, 1.019 +/- 0.005, and 1.064 +/- 0.003 for P. falciparum PNPs, respectively. Analysis of KIEs indicated a highly dissociative D(N)A(N) (S(N)1) stepwise mechanism with very little leaving group involvement. The near-unity 1'-(14)C KIEs for both human and P. falciparum PNP agree with the theoretical value for a 1'-(14)C equilibrium isotope effect for oxacarbenium ion formation when computed at the B1LYP/6-31G(d) level of theory. The 9-(15)N KIE for human PNP is also in agreement with theory for equilibrium formation of hypoxanthine and oxacarbenium ion at this level of theory. The 9-(15)N KIE for P. falciparum PNP shows a constrained vibrational environment around N9 at the transition state. A relatively small beta-secondary 2'-(3)H KIE for both enzymes indicates a 3'-endo conformation for ribose and relatively weak hyperconjugation at the transition state. The large 5'-(3)H KIE reveals substantial distortion at the 5'-hydroxymethyl group which causes loosening of the C5'-H5' bonds during the reaction coordinate.  相似文献   

8.
Plasmodium falciparum is unable to synthesize purine bases and relies upon purine salvage and purine recycling to meet its purine needs. We report that purines formed as products of polyamine synthesis are recycled in a novel pathway in which 5'-methylthioinosine is generated by adenosine deaminase. The action of P. falciparum purine nucleoside phosphorylase is a convergent step of purine salvage, converting both 5'-methylthioinosine and inosine to hypoxanthine. We used accelerator mass spectrometry to verify that 5'-methylthioinosine is an active nucleic acid precursor in P. falciparum. Prior studies have shown that inhibitors of purine salvage enzymes kill malaria, but potent malaria-specific inhibitors of these enzymes have not been described previously. 5'-Methylthio-immucillin-H, a transition state analogue inhibitor that is selective for malarial relative to human purine nucleoside phosphorylase, kills P. falciparum in culture. Immucillins are currently in clinical trials for other indications and may also have application as anti-malarials.  相似文献   

9.
Malaria continues to devastate sub-Saharan Africa owing to the emergence of drug resistance to established antimalarials and to the lack of an efficacious vaccine. Plasmodium species have a unique streamlined purine pathway in which the dual specificity enzyme purine nucleoside phosphorylase (PNP) functions in both purine recycling and purine salvage. To evaluate the importance of PNP in an in vivo model of malaria, we disrupted PyPNP, the gene encoding PNP in the lethal Plasmodium yoelii YM strain. P. yoelii parasites lacking PNP were attenuated and cleared in mice. Although able to form gametocytes, PNP-deficient parasites did not form oocysts in mosquito midguts and were not transmitted from mosquitoes to mice. Mice given PNP-deficient parasites were immune to subsequent challenge to a lethal inoculum of P. yoelii YM and to challenge from P. yoelii 17XNL, another strain. These in vivo studies with PNP-deficient parasites support purine salvage as a target for antimalarials. They also suggest a strategy for the development of attenuated nontransmissible metabolic mutants as blood-stage malaria vaccine strains.  相似文献   

10.

Background  

Purine nucleoside phosphorylase (PNP) is central to purine salvage mechanisms in Plasmodium parasites, the causative agents of malaria. Most human malaria results from infection either by Plasmodium falciparum (Pf), the deadliest form of the parasite, or by the widespread Plasmodium vivax (Pv). Whereas the PNP enzyme from Pf has previously been studied in detail, despite the prevalence of Pv little is known about many of the key metabolic enzymes from this parasite, including PvPNP.  相似文献   

11.
Purine nucleoside phosphorylase (PNP) is an important component of the nucleotide salvage pathway in apicomplexan parasites and a potential target for drug development. The intracellular pathogen Toxoplasma gondii was therefore tested for sensitivity to immucillins, transition state analogs that exhibit high potency against PNP in the malaria parasite Plasmodium falciparum. Growth of wild-type T. gondii is unaffected by up to 10 microm immucillin-H (ImmH), but mutants lacking the (redundant) purine salvage pathway enzyme adenosine kinase are susceptible to the drug, with an IC50 of 23 nm. This effect is rescued by the reaction product hypoxanthine, but not the substrate inosine, indicating that ImmH acts via inhibition of T. gondii PNP. The primary amino acid sequence of TgPNP is >40% identical to PfPNP, and recombinant enzymes exhibit similar kinetic parameters for most substrates. Unlike the Plasmodium enzyme, however, TgPNP cannot utilize 5'-methylthio-inosine (MTI). Moreover, TgPNP is insensitive to methylthio-immucillin-H (MT-ImmH), which inhibits PfPNP with a Ki* of 2.7 nm. MTI arises through the deamination of methylthio-adenosine, a product of the polyamine biosynthetic pathway, and its further metabolism to hypoxanthine involves PfPNP in purine recycling (in addition to salvage). Remarkably, analysis of the recently completed T. gondii genome indicates that polyamine biosynthetic machinery is completely lacking in this species, obviating the need for TgPNP to metabolize MTI. Differences in purine and polyamine metabolic pathways among members of the phylum Apicomplexa and these parasites and their human hosts are likely to influence drug target selection strategies. Targeting T. gondii PNP alone is unlikely to be efficacious for treatment of toxoplasmosis.  相似文献   

12.
Munagala N  Wang CC 《Biochemistry》2002,41(33):10382-10389
Trichomonas vaginalis is a parasitic protozoan and the causative agent of trichomoniasis. Its primary purine salvage system, consisting of a purine nucleoside phosphorylase (PNP) and a purine nucleoside kinase, presents potential targets for designing selective inhibitors as antitrichomonial drugs because of lack of de novo synthesis of purine nucleotides in this organism. cDNA encoding T. vaginalis PNP was isolated by complementation of an Escherichia coli strain deficient in PNP and expressed, and the recombinant enzyme was purified to apparent homogeneity. It bears only 28% sequence identity with that of human PNP but 57% identity with the E. coli enzyme. Gel filtration showed the enzyme in a hexameric form, similar to the bacterial PNPs. Steady-state kinetic analysis of T. vaginalis PNP-catalyzed reactions gave K(m)'s of 31.5, 59.7, and 6.1 microM for inosine, guanosine, and adenosine in the nucleosidase reaction and 45.6, 35.9, and 12.3 microM for hypoxanthine, guanine, and adenine in the direction of nucleoside synthesis. This substrate specificity appears to be similar to that of bacterial PNPs. The catalytic efficiency of this enzyme with adenine as substrate is 58-fold higher than that with either hypoxanthine or guanine, representing a distinct disparity with the mammalian PNPs, which have negligible activity with either adenine or adenosine. The kinetic mechanism of T. vaginalis PNP-catalyzed reactions, determined by product inhibition and equilibrium isotope exchange, was by random binding of substrates (purine base and ribose 1-phosphate) with ordered release of the purine nucleoside first, followed by inorganic phosphate. Formycin A, an analogue of adenosine known as an inhibitor of E. coli PNP without any effect on mammalian PNPs, was shown to inhibit T. vaginalis PNP with a K(is) of 2.3 microM by competing with adenosine. T. vaginalis PNP thus belongs to the family of bacterial PNPs and constitutes a target for antitrichomonial chemotherapy.  相似文献   

13.
Fine structure of human malaria in vitro.   总被引:15,自引:0,他引:15  
The erythrocytic cycle of the human malaria parasite, Plasmodium, falciparum, was examined by electron microscopy. Three strains of parasites maintained in continuous culture in human erythrocytes were compared with in vivo infections in Aotus monkeys. The ultrastructure of P. falciparum is not altered by continuous cultivation in vitro. Mitochondria contain DNA-like filaments and some cristae at all stages of the erythrocytic life cycle. The Golgi apparatus is prominent at the schizont stage and may be involved in the formation of rhoptries. In culture, knob-like protrusions first appear on the surface of trophozoite-infected erythrocytes. The time of appearance of knobs on cells in vitro correlates with the life cycle stage of parasites which are sequestered from the peripheral circulation in vivo. Knob material of older parasites coalesces and forms extensions from the erythrocyte surface. Some of this material is sloughed from the host cell surface. The parasitophorous vacuole membrane breaks down in erythrocytes containing mature merozoites both in vitro and in vivo. Merozoite structure is similar to that of P. knowlesi. The immature gametocytes in culture have no knobs.  相似文献   

14.
After reviewing the use of non-human primates of the Old and New Worlds for human malaria research, we concluded that another experimental animal which is easily available to use and possible to rear indoors is needed. Thus, we studied the susceptibility of the marmoset Callithrix penicillata to Plasmodium falciparum erythrocytic infections. The marmosets received various P. falciparum human isolates, directly from a patient and from continuous cultures. The Palo Alto strain, which has been adapted to the night monkey Aotus trivirgatus and further maintained in the squirrel monkey Saimiri sciureus was also used. In a total of 20 marmosets we performed 31 inoculations, with 10(5) to 10(9) parasites, intraperitoneally, intracardiacly or intravenously. Blood samples from each animal were examined daily up to day 90 post-inoculation. None of the intact marmosets developed patent infections. Four out of 19 C. penicillata, previously splenectomized, showed circulating parasites for up to five days after intravenous inoculation with the Palo Alto strain, becoming negative thereafter. Neither the addition to the simian diet of p-aminobenzoic acid, essential for the parasite metabolism, nor drug-immunosuppression, improved the marmoset susceptibility to P. falciparum.  相似文献   

15.
Preuss J  Jortzik E  Becker K 《IUBMB life》2012,64(7):603-611
Malaria is still one of the most threatening diseases worldwide. The high drug resistance rates of malarial parasites make its eradication difficult and furthermore necessitate the development of new antimalarial drugs. Plasmodium falciparum is responsible for severe malaria and therefore of special interest with regard to drug development. Plasmodium parasites are highly dependent on glucose and very sensitive to oxidative stress; two observations that drew interest to the pentose phosphate pathway (PPP) with its key enzyme glucose-6-phosphate dehydrogenase (G6PD). A central position of the PPP for malaria parasites is supported by the fact that human G6PD deficiency protects to a certain degree from malaria infections. Plasmodium parasites and the human host possess a complete PPP, both of which seem to be important for the parasites. Interestingly, there are major differences between parasite and human G6PD, making the enzyme of Plasmodium a promising target for antimalarial drug design. This review gives an overview of the current state of research on glucose-6-phosphate metabolism in P. falciparum and its impact on malaria infections. Moreover, the unique characteristics of the enzyme G6PD in P. falciparum are discussed, upon which its current status as promising target for drug development is based.  相似文献   

16.
The genetic deficiency of human PNP causes a specific immunodeficiency by inducing apoptosis in dividing T‐cells. Powerful inhibitors of PNP have been designed from the experimental determination of the transition state structure of PNPs. The Immucillins are transition state analogue inhibitors with K d values as low as 7 pM. In the presence of deoxyguanosine the Immucillins kill activated human T‐cells but not other cell types. The Immucillins are orally available and of low toxicity to mice. Immucillins also inhibit PNP from Plasmodium falciparum. Parasites cultured in human erythrocytes are killed by purine starvation in the presence of Immucillins and can be rescued by hypoxanthine.  相似文献   

17.
Trichomonas vaginalis is a parasitic protozoan purine auxotroph possessing a unique purine salvage pathway consisting of a bacterial type purine nucleoside phosphorylase (PNP) and a purine nucleoside kinase. Thus, T. vaginalis PNP (TvPNP) functions in the reverse direction relative to the PNPs in other organisms. Immucillin-A (ImmA) and DADMe-Immucillin-A (DADMe-ImmA) are transition state mimics of adenosine with geometric and electrostatic features that resemble early and late transition states of adenosine at the transition state stabilized by TvPNP. ImmA demonstrates slow-onset tight-binding inhibition with TvPNP, to give an equilibrium dissociation constant of 87 pM, an inhibitor release half-time of 17.2 min, and a Km/Kd ratio of 70,100. DADMe-ImmA resembles a late ribooxacarbenium ion transition state for TvPNP to give a dissociation constant of 30 pM, an inhibitor release half-time of 64 min, and a Km/Kd ratio of 203,300. The tight binding of DADMe-ImmA supports a late SN1 transition state. Despite their tight binding to TvPNP, ImmA and DADMe-ImmA are weak inhibitors of human and P. falciparum PNPs. The crystal structures of the TvPNP x ImmA x PO4 and TvPNP x DADMe-ImmA x PO4 ternary complexes differ from previous structures with substrate analogues. The tight binding with DADMe-ImmA is in part due to a 2.7 A ionic interaction between a PO4 oxygen and the N1' cation of the hydroxypyrrolidine and is weaker in the TvPNP x ImmA x PO4 structure at 3.5 A. However, the TvPNP x ImmA x PO4 structure includes hydrogen bonds between the 2'-hydroxyl and the protein that are not present in TvPNP x DADMe-ImmA x PO4. These structures explain why DADMe-ImmA binds tighter than ImmA. Immucillin-H is a 12 nM inhibitor of TvPNP but a 56 pM inhibitor of human PNP. And this difference is explained by isotope-edited difference infrared spectroscopy with [6-18O]ImmH to establish that O6 is the keto tautomer in TvPNP x ImmH x PO4, causing an unfavorable leaving-group interaction.  相似文献   

18.
The new world primate Aotus sp. has been recommended by the World Health Organization as a model for evaluation of malaria vaccine candidates, given its susceptibility to experimental infection with the human malaria parasites Plasmodium falciparum and P. vivax. The present study examined the in vitro proliferative response of peripheral blood mononuclear cells (PBMCs) isolated from Aotus monkeys, utilizing a wide range of mitogens. Results presented herein demonstrate that the in vitro proliferative response of PBMCs from the Aotus sp. is quite variable from monkey to monkey for each of the mitogens assessed. PBMCs from the Aotus monkey exhibited a delayed kinetic proliferative response and, particularly, a different sensitivity to proliferation in response to various concentrations of Phytohemagglutinin-P and favin lectins, the phorbol ester Phorbol myristate acetate and the calcium ionophore ionomycin. Altogether, our findings are consistent with the conclusion that the in vitro proliferative response of PBMCs from the Aotus differ in their activation requirements compared with PBMCs from humans.  相似文献   

19.
Thirty-three splenectomized Aotus lemurinus griseimembra monkeys with no previous experience with malaria were infected with the Vietnam Palo Alto strain of Plasmodium vivax. The median maximum parasite count was 280,000/microl. Nine splenectomized monkeys with previous infection with Plasmodium falciparum had median maximum parasite counts of 120,000/microl. Splenectomized Aotus nancymai monkeys supported infections at a lower level. Transmission via the bites of Anopheles dirus mosquitoes was obtained in a splenectomized A. lemurinus griseimembra, with a prepatent period of 31 days. It is estimated that between 1.5 x 10(8) and 1.6 x 10(9) parasites can be removed from an infected animal for molecular or diagnostic antigenic studies.  相似文献   

20.
The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 10(7), and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 A to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP.DADMe-ImmH.PO4 complex than in HsPNP.DADMe-ImmH.SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号