首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Differences in reproductive demands between the sexes of dioecious plants could cause divergence in physiology between the sexes. We found that the reproductive effort of female Silene latifolia plants increased to more than twice that of male plants or female plants that were prevented from setting fruit by lack of pollination after 4 weeks of flowering. Whole-plant source/sink ratios of pollinated females were significantly lower than those of males or unpollinated females because of investment in fruit. We hypothesized that these differences in source/sink ratio between the sexes and within females, depending on pollination, would lead to differences in leaf photosynthetic rates. Within females, we found that photosynthetic capacity was consistent with measurement of whole-plant source/sink ratio. Females that were setting fruit had 30% higher light-saturated photosynthetic rates by 28 days after flowering than females that were not setting fruit. Males, however, had consistently higher photosynthetic rates than females from 10 days after flowering onwards. Males also had approximately twice the dark respiration rates of fruiting females. We found that female reproductive structures are longer-lived and contribute more carbon to their own support than male reproductive structures. Despite the higher rates of leaf dark respiration and lower calyx photosynthetic rates, males fix more carbon than do females. We conclude that females have a sink-regulated mechanism of photosynthesis that allows them to respond to variations in fruit set. This mechanism is not, however, sufficient to explain why male S. latifolia plants have higher rates of photosynthesis, higher source/sink ratios, and lower reproductive allocation, but fail to grow larger than female plants.  相似文献   

3.
The dioecious plant Silene latifolia depends on nocturnal insects for pollination. To increase the chance of cross-pollination, pollen grains seem to be released and stigmas seem to be receptive simultaneously at night. We divided the floral development of S. latifolia into 1–20 stages, and determined the timetables of male and female function. The corolla of both male and female flowers opens at sunset (1900 hours) and closes at sunrise (0900 hours). To investigate the period of the reproductive phase of male and female function, we measured the germination rate on a pollen medium and the pollen germination rate on stigma during the period when stamens and stigmas were viable in the timetable. Male flowers had early- and late-maturing stamens that had the highest pollen viability, germination rate and pollen tube growth at midnight (0000 hours) at 1 day after flowering (DAF) and 0000 hours at 2 DAF. In contrast, female flowers maintained a germination rate of nearly 100 % from 1800 hours at 1 DAF to 1200 hours at 3 DAF. These results suggested that S. latifolia transferred the matured pollen grains from male flowers to female flowers only at night.  相似文献   

4.
The human Y--probably because of its nonrecombining nature--has lost 97% of its genes since X and Y chromosomes started to diverge [1, 2]. There are clear signs of degeneration in the Drosophila miranda neoY chromosome (an autosome fused to the Y chromosome), with neoY genes showing faster protein evolution [3-6], accumulation of unpreferred codons [6], more insertions of transposable elements [5, 7], and lower levels of expression [8] than neoX genes. In the many other taxa with sex chromosomes, Y degeneration has hardly been studied. In plants, many genes are expressed in pollen [9], and strong pollen selection may oppose the degeneration of plant Y chromosomes [10]. Silene latifolia is a dioecious plant with young heteromorphic sex chromosomes [11, 12]. Here we test whether the S. latifolia Y chromosome is undergoing genetic degeneration by analyzing seven sex-linked genes. S. latifolia Y-linked genes tend to evolve faster at the protein level than their X-linked homologs, and they have lower expression levels. Several Y gene introns have increased in length, with evidence for transposable-element accumulation. We detect signs of degeneration in most of the Y-linked gene sequences analyzed, similar to those of animal Y-linked and neo-Y chromosome genes.  相似文献   

5.
In an ongoing effort to trace the evolution of the sex chromosomes of Silene latifolia, we have searched for the existence of repetitive sequences specific to these chromosomes in the genome of this species by direct isolation from low-melting agarose gels of satellite DNA bands generated by digestion with restriction enzymes. Five monomeric units belonging to a highly repetitive family isolated from Silene latifolia, the SacI family, have been cloned and characterized. The consensus sequence of the repetitive units is 313 bp in length (however, high variability exists for monomer length variants) and 52.9% in AT. Repeating units are tandemly arranged at the subtelomeric regions of the chromosomes in this species. The sequence does not possess direct or inverted sequences of significant length, but short direct repeats are scattered throughout the monomer sequence. Several short sequence motives resemble degenerate monomers of the telomere repeat sequence of plants (TTTAGGG), confirming a tight association between this subtelomeric satellite DNA and the telomere repeats. Our approach in this work confirms that SacI satellite DNA sequences are among the most abundant in the genome of S. latifolia and, on the other hand, that satellite DNA sequences specific of sex chromosomes are absent in this species. This agrees with a sex determination system less cytogenetically diverged from a bisexual state than the system present in other plant species, such as R. acetosa, or at least a lesser degree of differentiation between the sex chromosomes of S. latifolia and the autosomes.  相似文献   

6.

Background

Silene latifolia represents one of the best-studied plant sex chromosome systems. A new approach using RNA-seq data has recently identified hundreds of new sex-linked genes in this species. However, this approach is expected to miss genes that are either not expressed or are expressed at low levels in the tissue(s) used for RNA-seq. Therefore other independent approaches are needed to discover such sex-linked genes.

Results

Here we used 10 well-characterized S. latifolia sex-linked genes and their homologs in Silene vulgaris, a species without sex chromosomes, to screen BAC libraries of both species. We isolated and sequenced 4 Mb of BAC clones of S. latifolia X and Y and S. vulgaris genomic regions, which yielded 59 new sex-linked genes (with S. vulgaris homologs for some of them). We assembled sequences that we believe represent the tip of the Xq arm. These sequences are clearly not pseudoautosomal, so we infer that the S. latifolia X has a single pseudoautosomal region (PAR) on the Xp arm. The estimated mean gene density in X BACs is 2.2 times lower than that in S. vulgaris BACs, agreeing with the genome size difference between these species. Gene density was estimated to be extremely low in the Y BAC clones. We compared our BAC-located genes with the sex-linked genes identified in previous RNA-seq studies, and found that about half of them (those with low expression in flower buds) were not identified as sex-linked in previous RNA-seq studies. We compiled a set of ~70 validated X/Y genes and X-hemizygous genes (without Y copies) from the literature, and used these genes to show that X-hemizygous genes have a higher probability of being undetected by the RNA-seq approach, compared with X/Y genes; we used this to estimate that about 30 % of our BAC-located genes must be X-hemizygous. The estimate is similar when we use BAC-located genes that have S. vulgaris homologs, which excludes genes that were gained by the X chromosome.

Conclusions

Our BAC sequencing identified 59 new sex-linked genes, and our analysis of these BAC-located genes, in combination with RNA-seq data suggests that gene losses from the S. latifolia Y chromosome could be as high as 30 %, higher than previous estimates of 10-20 %.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1698-7) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
We analyzed cell division patterns during the differentiation of unisexual flowers of the dioecious plant Silene latifolia using in situ hybridization with histone H4 and cyclin A1 genes. The gene expression patterns indicated that the activation of cell divisions in whorls 3 and 4 was reversed in young male and female flower buds. During maturation of flower buds, a remarkable reduction in cell division activity occurred in the male gynoecium primordium and female stamen primordia. Our analyses showed that differential activation and reduction of cell division strongly correlated with sex-specific promotion and cessation in the sex differentiation of unisexual flowers.  相似文献   

9.
Silene latifolia has heteromorphic sex chromosomes, the X and Y chromosomes. The Y chromosome, which is thought to carry the male determining gene, was isolated by UV laser microdissection and amplified by degenerate oligonucleotide-primed PCR. In situ chromosome suppression of the amplified Y chromosome DNA in the presence of female genomic DNA as a competitor showed that the microdissected Y chromosome DNA did not specifically hybridize to the Y chromosome, but hybridized to all chromosomes. This result suggests that the Y chromosome does not contain Y chromosome-enriched repetitive sequences. A repetitive sequence in the microdissected Y chromosome, RMY1, was isolated while screening repetitive sequences in the amplified Y chromosome. Part of the nucleotide sequence shared a similarity to that of X-43.1, which was isolated from microdissected X chromosomes. Since fluorescence in situ hybridization analysis with RMY1 demonstrated that RMY1 was localized at the ends of the chromosome, RMY1 may be a subtelomeric repetitive sequence. Regarding the sex chromosomes, RMY1 was detected at both ends of the X chromosome and at one end near the pseudoautosomal region of the Y chromosome. The different localization of RMY1 on the sex chromosomes provides a clue to the problem of how the sex chromosomes arose from autosomes.  相似文献   

10.
The genus Silene is a good model for studying evolution of the sex chromosomes, since it includes species that are hermaphroditic and dioecious, while maintain a basic chromosome number of 2n = 24. For some combinations of Silene species it is possible to construct interspecific hybrids. Here, we present a detailed karyological analysis of a hybrid between the dioecious Silene latifolia as the maternal plant and a related species, hermaphroditic Silene viscosa, used as a pollen partner. Using genomic probes (the genomic in situ hybridization (GISH) technique), we were able to clearly discriminate parental genomes and to show that they are largely separated in distinct nuclear domains. Molecular GISH and fluorescence in situ hybridization (FISH) markers document that the hybrid genome of somatic cells was strictly additive and stable, and that it had 12 chromosomes originating from each parent, including the only X chromosome of S. latifolia. Meiotic analysis revealed that, although related, respective parental chromosomes did not pair or paired only partially, which resulted in frequent chromosome abnormalities such as bridges and irregular non-disjunctions. GISH and FISH markers clearly document that the larger genome of S. latifolia and its largest chromosome component, the X chromosome, were mostly employed in chromosome lagging and misdivision.  相似文献   

11.
In many species, inbred individuals have reduced fitness. In plants with limited pollen and seed dispersal, post-pollination selection may reduce biparental inbreeding, but knowledge on the prevalence and importance of pollen competition or post-pollination selection after non-self pollination is scarce. We tested whether post-pollination selection favours less related pollen donors and reduces inbreeding in the dioecious plant Silene latifolia. We crossed 20 plants with pollen from a sibling and an unrelated male, and with a mix of both. We found significant inbreeding depression on vegetative growth, age at first flowering and total fitness (22% in males and 14% in females). In mixed pollinations, the unrelated male sired on average 57% of the offspring. The greater the paternity share of the unrelated sire, the larger the difference in relatedness of the two males to the female. The effect of genetic similarity on paternity is consistent with predictions for post-pollination selection, although paternity, at least in some crosses, may be affected by additional factors. Our data show that in plant systems with inbreeding depression, such as S. latifolia, pollen or embryo selection after multiple-donor pollination may indeed reduce inbreeding.  相似文献   

12.
13.

Background

Silene latifolia is a dioceous plant with well distinguished X and Y chromosomes that is used as a model to study sex determination and sex chromosome evolution in plants. However, efficient utilization of this species has been hampered by the lack of large-scale sequencing resources and detailed analysis of its genome composition, especially with respect to repetitive DNA, which makes up the majority of the genome.

Methodology/Principal Findings

We performed low-pass 454 sequencing followed by similarity-based clustering of 454 reads in order to identify and characterize sequences of all major groups of S. latifolia repeats. Illumina sequencing data from male and female genomes were also generated and employed to quantify the genomic proportions of individual repeat families. The majority of identified repeats belonged to LTR-retrotransposons, constituting about 50% of genomic DNA, with Ty3/gypsy elements being more frequent than Ty1/copia. While there were differences between the male and female genome in the abundance of several repeat families, their overall repeat composition was highly similar. Specific localization patterns on sex chromosomes were found for several satellite repeats using in situ hybridization with probes based on k-mer frequency analysis of Illumina sequencing data.

Conclusions/Significance

This study provides comprehensive information about the sequence composition and abundance of repeats representing over 60% of the S. latifolia genome. The results revealed generally low divergence in repeat composition between the sex chromosomes, which is consistent with their relatively recent origin. In addition, the study generated various data resources that are available for future exploration of the S. latifolia genome.  相似文献   

14.
Silene latifolia is a dioecious plant and has heteromorphic sex chromosomes: the X and Y chromosomes. The Y chromosome is the largest, and its genetic control seems to be most strict among dioecious plants. To identify the putative sex-determination elements on the Y chromosome, random amplified polymorphic DNA (RAPD) analysis was used to screen for Y chromosome specific DNA fragments, and 31 clones were successfully produced. Genomic Southern hybridization and FISH (fluorescence in situ hybridization) analyses revealed that one of the clones, #2-2, is a Y chromosome specific fragment that has a single copy on the Y chromosome. Sequence tagged site (STS)-PCR analysis also succeeded in amplifying one fragment in males and no fragments in females. Cloning and sequencing of the #2-2 flanking region using inverse PCR revealed an open reading frame (ORF) corresponding to 285 amino acids in length (ORF285), but no expression of the ORF285 gene was identified. ORF285 may be a clue to the origin of dioecy.  相似文献   

15.
The relatively recent origin of sex chromosomes in the plant genus Silene provides an opportunity to study the early stages of sex chromosome evolution and, potentially, to test between the different population genetic processes likely to operate in nonrecombining chromosomes such as Y chromosomes. We previously reported much lower nucleotide polymorphism in a Y-linked gene (SlY1) of the plant Silene latifolia than in the homologous X-linked gene (SlX1). Here, we report a more extensive study of nucleotide diversity in these sex-linked genes, including a larger S. latifolia sample and a sample from the closely related species Silene dioica, and we also study the diversity of an autosomal gene, CCLS37.1. We demonstrate that nucleotide diversity in the Y-linked genes of both S. latifolia and S. dioica is very low compared with that of the X-linked gene. However, the autosomal gene also has low DNA polymorphism, which may be due to a selective sweep. We use a single individual of the related hermaphrodite species Silene conica, as an outgroup to show that the low SlY1 diversity is not due to a lower mutation rate than that for the X-linked gene. We also investigate several other possibilities for the low SlY1 diversity, including differential gene flow between the two species for Y-linked, X-linked, and autosomal genes. The frequency spectrum of nucleotide polymorphism on the Y chromosome deviates significantly from that expected under a selective-sweep model. However, we detect population subdivision in both S. latifolia and S. dioica, so it is not simple to test for selective sweeps. We also discuss the possibility that Y-linked diversity is reduced due to highly variable male reproductive success, and we conclude that this explanation is unlikely.  相似文献   

16.
17.
Bergero R  Forrest A  Kamau E  Charlesworth D 《Genetics》2007,175(4):1945-1954
Despite its recent evolutionary origin, the sex chromosome system of the plant Silene latifolia shows signs of progressive suppression of recombination having created evolutionary strata of different X-Y divergence on sex chromosomes. However, even after 8 years of effort, this result is based on analyses of five sex-linked gene sequences, and the maximum divergence (and thus the age of this plant's sex chromosome system) has remained uncertain. More genes are therefore needed. Here, by segregation analysis of intron size variants (ISVS) and single nucleotide polymorphisms (SNPs), we identify three new Y-linked genes, one being duplicated on the Y chromosome, and test for evolutionary strata. All the new genes have homologs on the X and Y chromosomes. Synonymous divergence estimated between the X and Y homolog pairs is within the range of those already reported. Genetic mapping of the new X-linked loci shows that the map is the same in all three families that have been studied so far and that X-Y divergence increases with genetic distance from the pseudoautosomal region. We can now conclude that the divergence value is saturated, confirming the cessation of X-Y recombination in the evolution of the sex chromosomes at approximately 10-20 MYA.  相似文献   

18.
Sex determination in Silene latifolia uses the XX/XY system. The recent evolution of dioecy in S. latifolia provides a unique opportunity to study the early stages of Y chromosome evolution. However, the current Y chromosome map still contains many large gaps with no available markers. In this study, a sequence tagged site (STS) marker, MS2, was isolated and mapped to the same locus as L8 on the Y chromosome. To investigate the peripheral regions of MS2, a bacterial artificial chromosome (BAC) library was constructed from a male plant, and the BAC clone containing MS2 (MS2-9d12F) was isolated from 32 640 clones with an average insert size of 115 kb. A 109-kb insert of the BAC clone was analyzed. BLASTX analysis showed 11 sequences similar to some known proteins, most of which are retrotransposon-like elements. The ORF Finder predicted 9 ORFs within MS2-9d12F. RT-PCR analyses revealed that only 4 of the 9 predicted ORFs are expressed in both male and female plants. These 4 ORFs are candidates for genes having counterparts on both the X and Y chromosomes. Dot-matrix plot analysis and a BLASTN search revealed LTR-like sequences close to the retrotransposon-like elements and high similarity to 3 known genomic sequences of S. latifolia. These results suggest an accumulation of retrotransposons and segmental duplications in peripheral regions of MS2 during the early stage of sex chromosome evolution.  相似文献   

19.
20.
Silene latifolia is a dioecious plant with heteromorphic sex chromosomes. The sex chromosomes of S. latifolia provide an opportunity to study the early events in sex chromosome evolution because of their relatively recent emergence. In this article, we present the genetic and physical mapping, expression analysis, and molecular evolutionary analysis of a sex-linked gene from S. latifolia, DD44 (Differential Display 44). DD44 is homologous to the oligomycin sensitivity-conferring protein, an essential component of the mitochondrial ATP synthase, and is ubiquitously expressed in both sexes. We have been able to genetically map DD44 to a region of the Y chromosome that is genetically linked to the carpel-suppressing locus. Although we have physically mapped DD44 to the distal end of the long arm of the X chromosome using fluorescence in situ hybridization (FISH), DD44 maps to the opposite arm of the Y chromosome as determined by our genetic map. These data suggest that chromosomal rearrangements have occurred on the Y chromosome, which may have contributed to the genetic isolation of the Y chromosome. We discuss the implications of these results with respect to the structural and functional evolution of the S. latifolia Y chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号