首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a new experimental method of direct selection, identification, and mapping of potential enhancer sequences within extended stretches of genomic DNA. The method allows simultaneous cloning of a quantity of sequences instead of tedious screening of the separate ones, thus providing a robust and high-throughput approach to the mapping of enhancers. The selection procedure is based on the ability of such sequences to activate a minimal promoter that drives expression of a selective gene. To this end a mixture of short DNA fragments derived from the segment of interest was cloned in a retroviral vector containing the neomycin phosphotransferase II gene under control of a cytomegalovirus (CMV) minimal promoter. The pool of retroviruses obtained was used to infect HeLa cells and then to select neomycin-resistant colonies containing constructs with enhancer-like sequences. The pool of the genomic fragments was rescued by PCR and cloned, forming a library of the potential enhancers. Fifteen enhancer-like fragments were selected from 1-Mb human genome locus, and enhancer activity of 13 of them was verified in a transient transfection reporter gene assay. The sequences selected were found to be predominantly located near 5' regions of genes or within gene introns.  相似文献   

2.
3.
4.
5.
The Six1 homeobox gene plays critical roles in vertebrate organogenesis. Mice deficient for Six1 show severe defects in organs such as skeletal muscle, kidney, thymus, sensory organs and ganglia derived from cranial placodes, and mutations in human SIX1 cause branchio-oto-renal syndrome, an autosomal dominant developmental disorder characterized by hearing loss and branchial defects. The present study was designed to identify enhancers responsible for the dynamic expression pattern of Six1 during mouse embryogenesis. The results showed distinct enhancer activities of seven conserved non-coding sequences (CNSs) retained in tetrapod Six1 loci. The activities were detected in all cranial placodes (excluding the lens placode), dorsal root ganglia, somites, nephrogenic cord, notochord and cranial mesoderm. The major Six1-expression domains during development were covered by the sum of activities of these enhancers, together with the previously identified enhancer for the pre-placodal region and foregut endoderm. Thus, the eight CNSs identified in a series of our study represent major evolutionarily conserved enhancers responsible for the expression of Six1 in tetrapods. The results also confirmed that chick electroporation is a robust means to decipher regulatory information stored in vertebrate genomes. Mutational analysis of the most conserved placode-specific enhancer, Six1-21, indicated that the enhancer integrates a variety of inputs from Sox, Pax, Fox, Six, Wnt/Lef1 and basic helix-loop-helix proteins. Positive autoregulation of Six1 is achieved through the regulation of Six protein-binding sites. The identified Six1 enhancers provide valuable tools to understand the mechanism of Six1 regulation and to manipulate gene expression in the developing embryo, particularly in the sensory organs.  相似文献   

6.
The homeobox gene Hb9 is expressed selectively by motor neurons (MNs) in the developing CNS. Previous studies have identified a 9-kb 5' fragment of the mouse Hb9 gene that is sufficient to direct gene expression to spinal MNs in vivo. Here, we sought to identify more discrete MN-specifying elements, using homology searches between genomic sequences of evolutionarily distant species. Based on homology screening of the mouse and human Hb9 promoters, we identified a 3.6-kb Hb9 enhancer that proved sufficient to drive MN-specific lacZ expression. We then compared mouse, human, and pufferfish (Fugu rubripes) genomic sequences, and identified a conserved 438-bp sequence, consisting of noncontiguous 313-bp and 125-bp fragments, residing within the 3.6-kb Hb9 enhancer. The zebrafish (Danio rerio) Hb9 genomic region was then found to have two identical copies of the 125-bp sequence, but no counterpart for the 313-bp sequence. Transgenic analysis showed that the 125-bp alone was both necessary and sufficient to direct spinal MN-specific lacZ expression, whereas the 313-bp sequence had no such enhancer activity. Moreover, the 125-bp Hb9 enhancer was found to harbor two Hox/Pbx consensus-binding sequences, mutations of which completely disrupted thoracolumbar Hb9 expression. These data suggest that Hox/Pbx plays a critical role in the segmental specification of spinal MNs. Together, these results indicate that the molecular pathways regulating Hb9 expression are evolutionarily conserved, and that MN-specific gene expression may be directed and achieved using a small 125-bp 5' enhancer.  相似文献   

7.
8.
9.
The striped expression pattern of the pair-rule gene even skipped (eve) is established by five stripe-specific enhancers, each of which responds in a unique way to gradients of positional information in the early Drosophila embryo. The enhancer for eve stripe 2 (eve 2) is directly activated by the morphogens Bicoid (Bcd) and Hunchback (Hb). As these proteins are distributed throughout the anterior half of the embryo, formation of a single stripe requires that enhancer activation is prevented in all nuclei anterior to the stripe 2 position. The gap gene giant (gt) is involved in a repression mechanism that sets the anterior stripe border, but genetic removal of gt (or deletion of Gt-binding sites) causes stripe expansion only in the anterior subregion that lies adjacent to the stripe border. We identify a well-conserved sequence repeat, (GTTT)(4), which is required for repression in a more anterior subregion. This site is bound specifically by Sloppy-paired 1 (Slp1), which is expressed in a gap gene-like anterior domain. Ectopic Slp1 activity is sufficient for repression of stripe 2 of the endogenous eve gene, but is not required, suggesting that it is redundant with other anterior factors. Further genetic analysis suggests that the (GTTT)(4)-mediated mechanism is independent of the Gt-mediated mechanism that sets the anterior stripe border, and suggests that a third mechanism, downregulation of Bcd activity by Torso, prevents activation near the anterior tip. Thus, three distinct mechanisms are required for anterior repression of a single eve enhancer, each in a specific position. Ectopic Slp1 also represses eve stripes 1 and 3 to varying degrees, and the eve 1 and eve 3+7 enhancers each contain GTTT repeats similar to the site in the eve 2 enhancer. These results suggest a common mechanism for preventing anterior activation of three different eve enhancers.  相似文献   

10.
The Hoxc8 early enhancer that controls the initiation and establishment of Hoxc8 expression in the developing mouse embryo is found in different vertebrate lineages including mammals, birds and fish. Mouse and Fugu Hoxc8 early enhancers (200 bp) have diverged in the composition of elements located towards the 3' region. However, they share cis-acting elements A-E located in the 5' region. Mutations at these elements in the context of the mouse Hoxc8 early enhancer affect reporter gene expression in the posterior neural tube, somites and lateral plate mesoderm of day 9.5 mouse embryos. Here, we demonstrate that mutations introduced at the same elements but in the context of the Fugu Hoxc8 early enhancer had different consequences on the reporter gene expression in transgenic mouse embryos. Furthermore, in contrast to the mouse enhancer the Fugu enhancer does not utilize elements D and E in achieving posterior neural tube and somite expression. These results suggest that the diverged sequences prevent regulatory interactions at conserved cis-acting elements. We propose that divergent sequences modify regulatory interactions at conserved elements by providing a "contextual change". Our finding that the enhancer elements do not act in a unitary fashion but function in the context of the surrounding sequence brings a new dimension to the study of cis-regulatory evolution.  相似文献   

11.
Analysis of cis-regulatory enhancers has revealed that they consist of clustered blocks of highly conserved sequences. Although most characterized enhancers reside near their target genes, a growing number of studies have shown that enhancers located over 50 kb from their minimal promoter(s) are required for appropriate gene expression and many of these ‘long-range’ enhancers are found in genomic regions that are devoid of identified exons. To gain insight into the complexity of Drosophila cis-regulatory sequences within exon-poor regions, we have undertaken an evolutionary analysis of 39 of these regions located throughout the genome. This survey revealed that within these genomic expanses, clusters of conserved sequence blocks (CSBs) are positioned once every 1.1 kb, on average, and that a typical cluster contains multiple (5 to 30 or more) CSBs that have been maintained for at least 190 My of evolutionary divergence. As an initial step toward assessing the cis-regulatory activity of conserved clusters within gene-free genomic expanses, we have tested the in-vivo enhancer activity of 19 consecutive CSB clusters located in the middle of a 115 kb gene-poor region on the 3rd chromosome. Our studies revealed that each cluster functions independently as a specific spatial/temporal enhancer. In total, the enhancers possess a diversity of regulatory functions, including dynamically activating expression in defined patterns within subsets of cells in discrete regions of the embryo, larvae and/or adult. We also observed that many of the enhancers are multifunctional–that is, they activate expression during multiple developmental stages. By extending these results to the rest of the Drosophila genome, which contains over 70,000 non-coding CSB clusters, we suggest that most function as enhancers.  相似文献   

12.
13.
14.
15.
16.
Recently expanded knowledge of gene regulation clearly indicates that the regulatory sequences of a gene, usually identified as enhancers, are widely distributed in the gene locus, revising the classical view that they are clustered in the vicinity of genes. To identify regulatory sequences for Sox2 expression governing early neurogenesis, we scanned the 50-kb region of the chicken Sox2 locus for enhancer activity utilizing embryo electroporation, resulting in identification of a number of enhancers scattered throughout the analyzed genomic span. The 'pan-neural' Sox2 expression in early embryos is actually brought about by the composite activities of five separate enhancers with distinct spatio-temporal specificities. These and other functionally defined enhancers exactly correspond to extragenic sequence blocks that are conspicuously conserved between the chicken and mammalian genomes and that are embedded in sequences with a wide range of sequence conservation between humans and mice. The sequences conserved between amniotes and teleosts correspond to subregions of the enhancer subsets which presumably represent core motifs of the enhancers, and the limited conservation partly reflects divergent expression patterns of the gene. The phylogenic distance between the chicken and mammals appears optimal for identifying a battery of genetic regulatory elements as conserved sequence blocks, and chicken embryo electroporation facilitates functional characterization of these elements.  相似文献   

17.
18.
Insulator DNAs functionally isolate neighboring genes by blocking interactions between distal cis-regulatory elements and promoters. Here we report that a DNA fragment located in the upstream region of sea urchin, H. pulcherrimus, arylsulfatase (HpArs) gene blocks the interaction of the Ars enhancer when positioned between the enhancer and the target promoter, in an orientation dependent manner. The Ars insulator works only 3' to 5' direction and has no significant stimulatory or inhibitory effects on its own promoter. In transgenic Drosophila, the Ars insulator blocks the interaction between even-skipped stripe enhancer and its target promoter. The insulation mechanism operates also unidirectionally in Drosophila. We also show that the efficiency of transformation of HeLa cells is enhanced when the integrated gene is flanked by the Ars insulator, suggesting the sea urchin insulator overcomes the position-dependent transgene expression in mammalian cells. These results demonstrate that the mechanism of action of the insulator has been conserved throughout evolution.  相似文献   

19.
The bovine papillomavirus (BPV-1), Moloney murine sarcoma virus (MoMuSV) and simian virus 40(SV40) genomes have been shown to contain sequences termed 'enhancers' which activate the expression of linked genes. DNA fragments containing these three enhancers have been inserted into recombinant plasmids upstream from the herpes simplex virus thymidine kinase (tk) gene, and their effect on tk expression monitored. Two types of assay have been used. Firstly, the ability of recombinant plasmids to transform TK- recipient cells to a TK+ phenotype was measured. Secondly, the amount of tk-specific RNA and TK enzyme activity transiently expressed after DNA transfection was determined. Both types of assay gave similar results. The enhancers increased tk gene expression by regulating the amount of full length tk mRNA present shortly after transfection independent of gene copy number. Furthermore, marked species specificity in the relative efficiencies of different enhancers was observed, including that of the BPV-1 enhancer for the first time. The MoMuSV enhancer showed preference for murine fibroblasts, while the papillomavirus enhancer showed a marked preference for bovine cells. In contrast, the SV40 enhancer gave the same relative increase in tk gene expression in the murine, rat, bovine and human cells tested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号