首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chronic stress produces deficits in cognition accompanied by alterations in neural chemistry and morphology. For example, both stress and chronic administration of corticosterone produce dendritic atrophy in hippocampal neurons (Woolley C, Gould E, McEwen BS. 1990. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531:225–231; Watanabe Y, Gould E, McEwen BS, 1992b. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 588:341–345). Prefrontal cortex is also a target for glucocorticoids involved in the stress response (Meaney MJ, Aitken DH. 1985. [3H]Dexamethasone binding in rat frontal cortex. Brain Res 328:176–180); it shows neurochemical changes in response to stress (e.g., Luine VN, Spencer RL, McEwen BS. 1993. Effect of chronic corticosterone ingestion on spatial memory performance and hippocampal serotonergic function. Brain Res 616:55–70; Crayton JW, Joshi I, Gulati A, Arora RC, Wolf WA. 1996. Effect of corticosterone on serotonin and catecholamine receptors and uptake sites in rat frontal cortex. Brain Res 728:260–262; Takao K, Nagatani T, Kitamura Y, Yamawaki S. 1997. Effects of corticosterone on 5‐HT1A and 5‐HT2 receptor binding and on the receptor‐mediated behavioral responses of rats. Eur J Pharmacol 333:123–128; Sandi C, Loscertales M. 1999. Opposite effects on NCAM expression in the rat frontal cortex induced by acute vs. chronic corticosterone treatments. Brain Res 828:127–134), and mediates many of the behaviors that are altered by chronic corticosterone administration (e.g., Lyons DM, Lopez JM, Yang C, Schatzberg AF. 2000. Stress‐level cortisol treatment impairs inhibitory control of behavior in monkeys. J Neurosci 20:7816–7821). To determine if glucocorticoid‐induced morphological changes also occur in medial prefrontal cortex, the effects of chronic corticosterone administration on dendritic morphology in this corticolimbic structure were assessed. Adult male rats received s.c. injections of either corticosterone (10 mg in 250 μL sesame oil; n = 8) or vehicle (250 μL; n = 8) daily for 3 weeks. A third group of rats served as intact controls (n = 4). Brains were stained using a Golgi‐Cox procedure and pyramidal neurons in layer II‐III of medial prefrontal cortex were drawn; dendritic morphology was quantified in three dimensions. Sholl analyses demonstrated a significant redistribution of apical dendrites in corticosterone‐treated animals: the amount of dendritic material proximal to the soma was increased relative to intact rats, while distal dendritic material was decreased relative to intact animals. Thus, chronic glucocorticoid administration dramatically reorganized apical arbors in medial prefrontal cortex. This reorganization likely reflects functional changes and may contribute to stress‐induced changes in cognition. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 245–253, 2001  相似文献   

2.
Nicotine enhances attention and working memory by activating nicotinic acetylcholine receptors (nAChRs). The prefrontal cortex (PFC) is critical for these cognitive functions and is also rich in nAChR expression. Specific cellular and synaptic mechanisms underlying nicotine's effects on cognition remain elusive. Here we show that nicotine exposure increases the threshold for synaptic spike-timing-dependent potentiation (STDP) in layer V pyramidal neurons of the mouse PFC. During coincident presynaptic and postsynaptic activity, nicotine reduces dendritic calcium signals associated with action potential propagation by enhancing GABAergic transmission. This results from a series of presynaptic actions involving different PFC interneurons and multiple nAChR subtypes. Pharmacological block of nAChRs or GABA(A) receptors prevented nicotine's actions and restored STDP, as did increasing dendritic calcium signals with stronger postsynaptic activity. Thus, by activating nAChRs distributed throughout the PFC neuronal network, nicotine affects PFC information processing and storage by increasing the amount of postsynaptic activity necessary to induce STDP.  相似文献   

3.
Chronic stress produces deficits in cognition accompanied by alterations in neural chemistry and morphology. For example, both stress and chronic administration of corticosterone produce dendritic atrophy in hippocampal neurons (Woolley C, Gould E, McEwen BS. 1990. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531:225-231; Watanabe Y, Gould E, McEwen BS, 1992b. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 588:341-345). Prefrontal cortex is also a target for glucocorticoids involved in the stress response (Meaney MJ, Aitken DH. 1985. [(3)H]Dexamethasone binding in rat frontal cortex. Brain Res 328:176-180); it shows neurochemical changes in response to stress (e.g., Luine VN, Spencer RL, McEwen BS. 1993. Effect of chronic corticosterone ingestion on spatial memory performance and hippocampal serotonergic function. Brain Res 616:55-70; Crayton JW, Joshi I, Gulati A, Arora RC, Wolf WA. 1996. Effect of corticosterone on serotonin and catecholamine receptors and uptake sites in rat frontal cortex. Brain Res 728:260-262; Takao K, Nagatani T, Kitamura Y, Yamawaki S. 1997. Effects of corticosterone on 5-HT(1A) and 5-HT(2) receptor binding and on the receptor-mediated behavioral responses of rats. Eur J Pharmacol 333:123-128; Sandi C, Loscertales M. 1999. Opposite effects on NCAM expression in the rat frontal cortex induced by acute vs. chronic corticosterone treatments. Brain Res 828:127-134), and mediates many of the behaviors that are altered by chronic corticosterone administration (e.g., Lyons DM, Lopez JM, Yang C, Schatzberg AF. 2000. Stress-level cortisol treatment impairs inhibitory control of behavior in monkeys. J Neurosci 20:7816-7821). To determine if glucocorticoid-induced morphological changes also occur in medial prefrontal cortex, the effects of chronic corticosterone administration on dendritic morphology in this corticolimbic structure were assessed. Adult male rats received s.c. injections of either corticosterone (10 mg in 250 microL sesame oil; n = 8) or vehicle (250 microL; n = 8) daily for 3 weeks. A third group of rats served as intact controls (n = 4). Brains were stained using a Golgi-Cox procedure and pyramidal neurons in layer II-III of medial prefrontal cortex were drawn; dendritic morphology was quantified in three dimensions. Sholl analyses demonstrated a significant redistribution of apical dendrites in corticosterone-treated animals: the amount of dendritic material proximal to the soma was increased relative to intact rats, while distal dendritic material was decreased relative to intact animals. Thus, chronic glucocorticoid administration dramatically reorganized apical arbors in medial prefrontal cortex. This reorganization likely reflects functional changes and may contribute to stress-induced changes in cognition.  相似文献   

4.
《Current biology : CB》2021,31(19):4327-4339.e6
  1. Download : Download high-res image (157KB)
  2. Download : Download full-size image
  相似文献   

5.
Four models of network structure are combined with models of bioenergetic dynamics to study the role of food web topology and nonlinear dynamics on species coexistence in complex ecological networks. Network models range from the highly structured niche model to loosely constrained energetically feasible random networks. Bioenergetic models differ in how they represent primary production, functional responses, and consumption by generalists. Network structure weakly influenced the ability of species to coexist. Species persistence is strongly affected by functional responses and generalists’ consumption rates but weakly affected by models and amounts of primary production. Despite these generalities, specific mechanisms that determine persistence under one dynamical regime, such as top-down control by consumers, may play an insignificant role under different dynamical conditions. Future research is needed to strengthen the weak empirical basis for various functional forms and parameter values that strongly influence whether species can coexist in complex food webs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Johnston K  Levin HM  Koval MJ  Everling S 《Neuron》2007,53(3):453-462
The prefrontal cortex (PFC) and anterior cingulate cortex (ACC) have both been implicated in cognitive control, but their relative roles remain unclear. Here we recorded the activity of single neurons in both areas while monkeys performed a task that required them to switch between trials in which they had to look toward a flashed stimulus (prosaccades) and trials in which they had to look away from the stimulus (antisaccades). We found that ACC neurons had a higher level of task selectivity than PFC neurons during the preparatory period on trials immediately following a task switch. In ACC neurons, task selectivity was strongest after the task switch and declined throughout the task block, whereas task selectivity remained constant in the PFC. These results demonstrate that the ACC is recruited when cognitive demands increase and suggest a role for both areas in task maintenance and the implementation of top-down control.  相似文献   

7.
Using expression profiles from postmortem prefrontal cortex samples of 624 dementia patients and non-demented controls, we investigated global disruptions in the co-regulation of genes in two neurodegenerative diseases, late-onset Alzheimer''s disease (AD) and Huntington''s disease (HD). We identified networks of differentially co-expressed (DC) gene pairs that either gained or lost correlation in disease cases relative to the control group, with the former dominant for both AD and HD and both patterns replicating in independent human cohorts of AD and aging. When aligning networks of DC patterns and physical interactions, we identified a 242-gene subnetwork enriched for independent AD/HD signatures. This subnetwork revealed a surprising dichotomy of gained/lost correlations among two inter-connected processes, chromatin organization and neural differentiation, and included DNA methyltransferases, DNMT1 and DNMT3A, of which we predicted the former but not latter as a key regulator. To validate the inter-connection of these two processes and our key regulator prediction, we generated two brain-specific knockout (KO) mice and show that Dnmt1 KO signature significantly overlaps with the subnetwork (P = 3.1 × 10−12), while Dnmt3a KO signature does not (P = 0.017).  相似文献   

8.
The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive "insight" capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates.  相似文献   

9.
Narayanan NS  Laubach M 《Neuron》2006,52(5):921-931
Dorsomedial prefrontal cortex is critical for the temporal control of behavior. Dorsomedial prefrontal cortex might alter neuronal activity in areas such as motor cortex to inhibit temporally inappropriate responses. We tested this hypothesis by recording from neuronal ensembles in rodent dorsomedial prefrontal cortex during a delayed-response task. One-third of dorsomedial prefrontal neurons were significantly modulated during the delay period. The activity of many of these neurons was predictive of premature responding. We then reversibly inactivated dorsomedial prefrontal cortex while recording ensemble activity in motor cortex. Inactivation of dorsomedial prefrontal cortex reduced delay-related firing, but not response-related firing, in motor cortex. Finally, we made simultaneous recordings in dorsomedial prefrontal cortex and motor cortex and found strong delay-related temporal correlations between neurons in the two cortical areas. These data suggest that functional interactions between dorsomedial prefrontal cortex and motor cortex might serve as a top-down control signal that inhibits inappropriate responding.  相似文献   

10.
  相似文献   

11.
Behavioral planning in the prefrontal cortex   总被引:8,自引:0,他引:8  
Recent studies have presented evidence that the prefrontal cortex plays a crucial role in every aspect of the cognitive processes necessary for behavioral planning: processing and integration of perceived or memorized information, associative learning, reward-based behavioral control, behavioral selection/decision-making and behavioral guidance. We propose that the creation of novel information is the means by which the prefrontal cortex operates to achieve executive control over behavioral planning. The prefrontal cortex is the site of operation of nodal points, where neural circuits integrate currently available or memorized information to generate the information that is necessary to perform an action. The prefrontal cortex also regulates the flow of information through multiple nodes to meet behavioral demands.  相似文献   

12.
Afilopodium protrudes by elongation of bundled actin filaments in its core. However, the mechanism of filopodia initiation remains unknown. Using live-cell imaging with GFP-tagged proteins and correlative electron microscopy, we performed a kinetic-structural analysis of filopodial initiation in B16F1 melanoma cells. Filopodial bundles arose not by a specific nucleation event, but by reorganization of the lamellipodial dendritic network analogous to fusion of established filopodia but occurring at the level of individual filaments. Subsets of independently nucleated lamellipodial filaments elongated and gradually associated with each other at their barbed ends, leading to formation of cone-shaped structures that we term Lambda-precursors. An early marker of initiation was the gradual coalescence of GFP-vasodilator-stimulated phosphoprotein (GFP-VASP) fluorescence at the leading edge into discrete foci. The GFP-VASP foci were associated with Lambda-precursors, whereas Arp2/3 was not. Subsequent recruitment of fascin to the clustered barbed ends of Lambda-precursors initiated filament bundling and completed formation of the nascent filopodium. We propose a convergent elongation model of filopodia initiation, stipulating that filaments within the lamellipodial dendritic network acquire privileged status by binding a set of molecules (including VASP) to their barbed ends, which protect them from capping and mediate association of barbed ends with each other.  相似文献   

13.
Many cognitive tasks require the ability to maintain and manipulate simultaneously several chunks of information. Numerous neurobiological observations have reported that this ability, known as the working memory, is associated with both a slow oscillation (leading to the up and down states) and the presence of the theta rhythm. Furthermore, during resting state, the spontaneous activity of the cortex exhibits exquisite spatiotemporal patterns sharing similar features with the ones observed during specific memory tasks. Here to enlighten neural implication of working memory under these complicated dynamics, we propose a phenomenological network model with biologically plausible neural dynamics and recurrent connections. Each unit embeds an internal oscillation at the theta rhythm which can be triggered during up-state of the membrane potential. As a result, the resting state of a single unit is no longer a classical fixed point attractor but rather the Milnor attractor, and multiple oscillations appear in the dynamics of a coupled system. In conclusion, the interplay between the up and down states and theta rhythm endows high potential in working memory operation associated with complexity in spontaneous activities.
Colin MolterEmail:
  相似文献   

14.
Metacognition is the ability to reflect on, and evaluate, our cognition and behaviour. Distortions in metacognition are common in mental health disorders, though the neural underpinnings of such dysfunction are unknown. One reason for this is that models of key components of metacognition, such as decision confidence, are generally specified at an algorithmic or process level. While such models can be used to relate brain function to psychopathology, they are difficult to map to a neurobiological mechanism. Here, we develop a biologically-plausible model of decision uncertainty in an attempt to bridge this gap. We first relate the model’s uncertainty in perceptual decisions to standard metrics of metacognition, namely mean confidence level (bias) and the accuracy of metacognitive judgments (sensitivity). We show that dissociable shifts in metacognition are associated with isolated disturbances at higher-order levels of a circuit associated with self-monitoring, akin to neuropsychological findings that highlight the detrimental effect of prefrontal brain lesions on metacognitive performance. Notably, we are able to account for empirical confidence judgements by fitting the parameters of our biophysical model to first-order performance data, specifically choice and response times. Lastly, in a reanalysis of existing data we show that self-reported mental health symptoms relate to disturbances in an uncertainty-monitoring component of the network. By bridging a gap between a biologically-plausible model of confidence formation and observed disturbances of metacognition in mental health disorders we provide a first step towards mapping theoretical constructs of metacognition onto dynamical models of decision uncertainty. In doing so, we provide a computational framework for modelling metacognitive performance in settings where access to explicit confidence reports is not possible.  相似文献   

15.
Several decades of patient, functional imaging and neurophysiological studies have supported a model in which the lateral prefrontal cortex (PFC) acts to suppress unwanted saccades by inhibiting activity in the oculomotor system. However, recent results from combined PFC deactivation and neural recordings of the superior colliculus in monkeys demonstrate that the primary influence of the PFC on the oculomotor system is excitatory, and stands in direct contradiction to the inhibitory model of PFC function. Although erroneous saccades towards a visual stimulus are commonly labelled reflexive in patients with PFC damage or dysfunction, the latencies of most of these saccades are outside of the range of express saccades, which are triggered directly by the visual stimulus. Deactivation and pharmacological manipulation studies in monkeys suggest that response errors following PFC damage or dysfunction are not the result of a failure in response suppression but can best be understood in the context of a failure to maintain and implement the proper task set.  相似文献   

16.
The primary motor cortex (M1) was mapped with intracortical microstimulation (ICMS) in a 15 year-old macaque whose right upper extremity was amputated at the shoulder joint prior to 2 years of age. Movements of the right shoulder girdle and stump were evoked by ICMS throughout the left M1 upper extremity region. The size of the left M1 upper extremity region contralateral to the amputated arm was not appreciably different from the size of the right upper extremity region contralateral to the intact arm. Long stimulus trains and/or higher stimulus currents were needed to evoke detectable movements at significantly more loci in the left than in the right M1 upper extremity region. These observations would be consistent with unmasking of a high threshold representation of shoulder musculature that normally exists throughout the central core of the upper extremity region, where it underlies a lower threshold representation of the distal forelimb. Alternatively, invasion of the de-efferented distal forelimb core by surrounding shoulder representation may have occurred. Differences between the limited M1 reorganization observed in the present study and the more extensive reorganization of S1 observed in other studies may reflect fundamental differences between M1 and S1, and/or differences in the extent of de-efferentation versus deafferentation.  相似文献   

17.
18.
19.
Yoshida W  Ishii S 《Neuron》2006,50(5):781-789
Making optimal decisions in the face of uncertain or incomplete information arises as a common problem in everyday behavior, but the neural processes underlying this ability remain poorly understood. A typical case is navigation, in which a subject has to search for a known goal from an unknown location. Navigating under uncertain conditions requires making decisions on the basis of the current belief about location and updating that belief based on incoming information. Here, we use functional magnetic resonance imaging during a maze navigation task to study neural activity relating to the resolution of uncertainty as subjects make sequential decisions to reach a goal. We show that distinct regions of prefrontal cortex are engaged in specific computational functions that are well described by a Bayesian model of decision making. This permits efficient goal-oriented navigation and provides new insights into decision making by humans.  相似文献   

20.
The epithelial receptors are represented in the mammalian brain cortex in a genetically defined, strictly regulated manner. Until the 1970s, the cortical maps and the wiring of the central nervous system were thought to be rather static and unchangeable. Subsequently, however, studies of sensory and motor cortical maps in particular genetic strains of animals and in animals with different perinatal or adult histories have revealed that the map organization can be modified at any time between conception and death. Especially studies of the effects of peripheral and central lesions and of perceptual learning on the sensory and motor cortical representations have had a dramatic effect in alerting neuroscientists and therapists to the reorganizational capacity of the adult brain. From a theoretical aspect, these changes in the cortical maps provide useful models for an understanding of the changes that can occur in the integrative functions of complex brain networks throughout life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号