共查询到20条相似文献,搜索用时 0 毫秒
1.
Downs JA 《DNA Repair》2008,7(12):1938-2024
The role of chromatin and its modulation during DNA repair has become increasingly understood in recent years. A number of histone modifications that contribute towards the cellular response to DNA damage have been identified, including the acetylation of histone H3 at lysine 56. H3 K56 acetylation occurs normally during S phase, but persists in the presence of DNA damage. In the absence of this modification, cellular survival following DNA damage is impaired. Two recent reports provide additional insights into how H3 K56 acetylation functions in DNA damage responses. In particular, this modification appears to be important for both normal replication-coupled nucleosome assembly as well as nucleosome assembly at sites of DNA damage following repair. 相似文献
2.
Histone acetylation reduces H1-mediated nucleosome interactions during chromatin assembly 总被引:5,自引:0,他引:5
During chromatin replication and nucleosome assembly, newly synthesized histone H4 is acetylated before it is deposited onto DNA, then deacetylated as assembly proceeds. In a previous study (Perry and Annunziato, Nucleic Acids Res. 17, 4275 [1989]) it was shown that when replication occurs in the presence of sodium butyrate (thereby inhibiting histone deacetylation), nascent chromatin fails to mature fully and instead remains preferentially sensitive to DNaseI, more soluble in magnesium, and depleted of histone H1 (relative to mature chromatin). In the following report the relationships between chromatin replication, histone acetylation, and H1-mediated nucleosome aggregation were further investigated. Chromatin was replicated in the presence or absence of sodium butyrate; isolated nucleosomes were stripped of linker histone, reconstituted with H1, and treated to produce Mg(2+)-soluble and Mg(2+)-insoluble chromatin fractions. Following the removal of H1, all solubility differences between chromatin replicated in sodium butyrate for 30 min (bu-chromatin) and control chromatin were lost. Reconstitution with H1 completely restored the preferential Mg(2+)-solubility of bu-chromatin, demonstrating that a reduced capacity for aggregation/condensation is an inherent feature of acetylated nascent nucleosomes; however, titration with excess H1 caused the solubility differences to be lost again. Moreover, when the core histone N-terminal "tails" (the sites of acetylation) were removed by trypsinization prior to reconstitution, H1 was unable to reestablish the altered solubility of chromatin replicated in butyrate. Thus, the core histone "tails," and the acetylation thereof, not only modulate H1-mediated nucleosome interactions in vitro, but also strongly influence the ability of H1 to differentiate between new and old nucleosomes. The data suggest a possible mechanism for the control of H1 deposition and/or chromatin folding during nucleosome assembly. 相似文献
3.
4.
Wurtele H Kaiser GS Bacal J St-Hilaire E Lee EH Tsao S Dorn J Maddox P Lisby M Pasero P Verreault A 《Molecular and cellular biology》2012,32(1):154-172
In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) occurs in newly synthesized histones that are deposited throughout the genome during DNA replication. Defects in H3K56ac sensitize cells to genotoxic agents, suggesting that this modification plays an important role in the DNA damage response. However, the links between histone acetylation, the nascent chromatin structure, and the DNA damage response are poorly understood. Here we report that cells devoid of H3K56ac are sensitive to DNA damage sustained during transient exposure to methyl methanesulfonate (MMS) or camptothecin but are only mildly affected by hydroxyurea. We demonstrate that, after exposure to MMS, H3K56ac-deficient cells cannot complete DNA replication and eventually segregate chromosomes with intranuclear foci containing the recombination protein Rad52. In addition, we provide evidence that these phenotypes are not due to defects in base excision repair, defects in DNA damage tolerance, or a lack of Rad51 loading at sites of DNA damage. Our results argue that the acute sensitivity of H3K56ac-deficient cells to MMS and camptothecin stems from a failure to complete the repair of specific types of DNA lesions by recombination and/or from defects in the completion of DNA replication. 相似文献
5.
《Cell cycle (Georgetown, Tex.)》2013,12(11):1747-1753
Histone H3 lysine 56 acetylation (H3K56Ac) has recently been identified and shown to be important for genomic stability in yeast. However, whether or not H3K56 acetylation occurs in mammals is not clear. Here, we report that H3K56Ac exists in mammals. Mammalian H3K56Ac requires the histone chaperone Asf1 and occurs mainly at the S phase in unstressed cells. Moreover, SIRT1, which is a mammalian member of sirtuin family of NAD+-dependent deacetylases, regulates the deacetylation of H3K56. We further showed that proper H3K56 acetylation is critical for genomic stability and DNA damage response. These results establish the existence and functional significance of H3K56Ac in mammals and identify two regulators of this modification. 相似文献
6.
E S Bogdanova 《Molekuliarnaia biologiia》1985,19(5):1251-1258
We studied nucleosome assemble in vitro in a system containing the relaxed DNA CoIE1, core histones and a crude extract Drosophila embryos. Supercoiling is a criterium for making conclusions about forming nucleosomes. Supercoiling raises more if nucleosome assemble takes place in the presence of histone H1, polylysine of the 20 000 molecular weight or spermine. These agents do not stimulate the relaxation, and they are more effective when they are added earlier. Thus histone H1, spermine and polylysine can facilitate nucleosome assemble in vitro and with two former agents it may be possibly that the same process takes place in vivo. 相似文献
7.
Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA replication-coupled nucleosome assembly pathway remain enigmatic. Here we show that histone H3 acetylated at lysine 56 (H3K56Ac) is incorporated onto replicating DNA and, by increasing the binding affinity of CAF-1 and Rtt106 for histone H3, H3K56Ac enhances the ability of these histone chaperones to assemble DNA into nucleosomes. Genetic analysis indicates that H3K56Ac acts in a nonredundant manner with the acetylation of the N-terminal residues of H3 and H4 in nucleosome assembly. These results reveal a mechanism by which H3K56Ac regulates replication-coupled nucleosome assembly mediated by CAF-1 and Rtt106. 相似文献
8.
9.
Ferreira H Somers J Webster R Flaus A Owen-Hughes T 《Molecular and cellular biology》2007,27(11):4037-4048
Nucleosomes fulfill the apparently conflicting roles of compacting DNA within eukaryotic genomes while permitting access to regulatory factors. Central to this is their ability to stably associate with DNA while retaining the ability to undergo rearrangements that increase access to the underlying DNA. Here, we have studied different aspects of nucleosome dynamics including nucleosome sliding, histone dimer exchange, and DNA wrapping within nucleosomes. We find that alterations to histone proteins, especially the histone tails and vicinity of the histone H3 alphaN helix, can affect these processes differently, suggesting that they are mechanistically distinct. This raises the possibility that modifications to histone proteins may provide a means of fine-tuning specific aspects of the dynamic properties of nucleosomes to the context in which they are located. 相似文献
10.
11.
Deacetylation of histone H3 K56, regulated by the sirtuins Hst3p and Hst4p, is critical for maintenance of genomic stability. However, the physiological consequences of a lack of H3 K56 deacetylation are poorly understood. Here we show that cells lacking Hst3p and Hst4p, in which H3 K56 is constitutively hyperacetylated, exhibit hallmarks of spontaneous DNA damage, such as activation of the checkpoint kinase Rad53p and upregulation of DNA-damage inducible genes. Consistently, hst3 hst4 cells display synthetic lethality interactions with mutations that cripple genes involved in DNA replication and DNA double-strand break (DSB) repair. In most cases, synthetic lethality depends upon hyperacetylation of H3 K56 because it can be suppressed by mutation of K56 to arginine, which mimics the nonacetylated state. We also show that hst3 hst4 phenotypes can be suppressed by overexpression of the PCNA clamp loader large subunit, Rfc1p, and by inactivation of the alternative clamp loaders CTF18, RAD24, and ELG1. Loss of CTF4, encoding a replisome component involved in sister chromatid cohesion, also suppresses hst3 hst4 phenotypes. Genetic analysis suggests that CTF4 is a part of the K56 acetylation pathway that converges on and modulates replisome function. This pathway represents an important mechanism for maintenance of genomic stability and depends upon proper regulation of H3 K56 acetylation by Hst3p and Hst4p. Our data also suggest the existence of a precarious balance between Rfc1p and the other RFC complexes and that the nonreplicative forms of RFC are strongly deleterious to cells that have genomewide and constitutive H3 K56 hyperacetylation. 相似文献
12.
13.
14.
Histone tails and their posttranslational modifications play important roles in regulating the structure and dynamics of chromatin. For histone H4, the basic patch K(16)R(17)H(18)R(19) in the N-terminal tail modulates chromatin compaction and nucleosome sliding catalyzed by ATP-dependent ISWI chromatin remodeling enzymes while acetylation of H4 K16 affects both functions. The structural basis for the effects of this acetylation is unknown. Here, we investigated the conformation of histone tails in the nucleosome by solution NMR. We found that backbone amides of the N-terminal tails of histones H2A, H2B, and H3 are largely observable due to their conformational disorder. However, only residues 1-15 in H4 can be detected, indicating that residues 16-22 in the tails of both H4 histones fold onto the nucleosome core. Surprisingly, we found that K16Q mutation in H4, a mimic of K16 acetylation, leads to a structural disorder of the basic patch. Thus, our study suggests that the folded structure of the H4 basic patch in the nucleosome is important for chromatin compaction and nucleosome remodeling by ISWI enzymes while K16 acetylation affects both functions by causing structural disorder of the basic patch K(16)R(17)H(18)R(19). 相似文献
15.
16.
Marie‐Eve Lalonde Cristina González‐Aguilera Jean‐Philippe Lambert Sung‐Bau Lee Xiaobei Zhao Constance Alabert Jens V Johansen Eric Paquet Xiang‐Jiao Yang Anne‐Claude Gingras Jacques Côté Anja Groth 《The EMBO journal》2016,35(2):176-192
During DNA replication, thousands of replication origins are activated across the genome. Chromatin architecture contributes to origin specification and usage, yet it remains unclear which chromatin features impact on DNA replication. Here, we perform a RNAi screen for chromatin regulators implicated in replication control by measuring RPA accumulation upon replication stress. We identify six factors required for normal rates of DNA replication and characterize a function of the bromodomain and PHD finger‐containing protein 3 (BRPF3) in replication initiation. BRPF3 forms a complex with HBO1 that specifically acetylates histone H3K14, and genomewide analysis shows high enrichment of BRPF3, HBO1 and H3K14ac at ORC1‐binding sites and replication origins found in the vicinity of TSSs. Consistent with this, BRPF3 is necessary for H3K14ac at selected origins and efficient origin activation. CDC45 recruitment, but not MCM2‐7 loading, is impaired in BRPF3‐depleted cells, identifying a BRPF3‐dependent function of HBO1 in origin activation that is complementary to its role in licencing. We thus propose that BRPF3‐HBO1 acetylation of histone H3K14 around TSS facilitates efficient activation of nearby replication origins. 相似文献
17.
18.
Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis 总被引:43,自引:0,他引:43
Deposition of the major histone H3 (H3.1) is coupled to DNA synthesis during DNA replication and possibly DNA repair, whereas histone variant H3.3 serves as the replacement variant for the DNA-synthesis-independent deposition pathway. To address how histones H3.1 and H3.3 are deposited into chromatin through distinct pathways, we have purified deposition machineries for these histones. The H3.1 and H3.3 complexes contain distinct histone chaperones, CAF-1 and HIRA, that we show are necessary to mediate DNA-synthesis-dependent and -independent nucleosome assembly, respectively. Notably, these complexes possess one molecule each of H3.1/H3.3 and H4, suggesting that histones H3 and H4 exist as dimeric units that are important intermediates in nucleosome formation. This finding provides new insights into possible mechanisms for maintenance of epigenetic information after chromatin duplication. 相似文献
19.