首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chamberlain et al. have assigned the gene for Friedreich ataxia (FA), a recessive neurodegenerative disorder, to chromosome 9, and have proposed a regional localization in the proximal short arm (9p22-cen), on the basis of linkage to D9S15 and to interferon-beta (IFNB), the latter being localized in 9p22. We confirmed more recently the close linkage to D9S15 in another set of families but found much looser linkage to IFNB. We also reported another closely linked marker, D9S5. Additional families have now been studied, and our updated lod scores are z = 14.30 at theta = .00 for D9S15-FA linkage and z = 6.30 at theta = .00 for D9S5-FA linkage. Together with the recent data of Chamberlain et al., this shows that D9S15 is very likely within 1 cM of the FA locus. We have found very significant linkage disequilibrium (delta Std = .28, chi 2 = 9.71, P less than .01) between FA and the D9S15 MspI RFLP in French families, which further supports the very close proximity of these two loci. No recombination between D9S5 and D9S15 was found in the FA families or Centre d'Etude du Polymorphisme Humain families (z = 9.30 at theta = .00). Thus D9S5, D9S15, and FA define a cluster of tightly linked loci. We have mapped D9S5 by in situ hybridization to 9q13-q21, and, accordingly, we assign the D9S5, D9S15, and FA cluster to the proximal part of chromosome 9 long arm, close to the heterochromatic region.  相似文献   

2.
Genetic homogeneity at the Friedreich ataxia locus on chromosome 9   总被引:3,自引:10,他引:3       下载免费PDF全文
Classical Friedreich ataxia, a progressive, neurodegenerative disorder involving both the central and peripheral nervous systems, has been subclassified according to the observed clinical heterogeneity. The variations in the age at onset and in the spectrum and severity of symptoms have previously been interpreted as evidence of genetic heterogeneity. We have studied the linkage between the disorder and closely linked DNA markers in families of distinct ethnic origins, including the "typical" French-Canadians and the Acadian population of Louisiana. The disease in these two populations, both of continental French origin, has a very similar initial clinical picture. However, a marked difference in the rate of progression of the obligatory symptoms after 10 years of apparent disease is observed. A total of 553 individuals from 80 families with 202 affected members have been typed with the chromosome 9 marker MCT112, which we have previously shown to be closely linked to the disease locus. Evidence for linkage was observed in all families with the generation of a combined total lod score of 25.09 at a recombination fraction of theta = .00, providing strong evidence for genetic homogeneity at this locus for the classical form of this disease.  相似文献   

3.
Summary In order to determine the regional localization of the Friedreich's ataxia (FA) gene on chromosome 9, the DNA probe DR47 (D9S5), which detects a restriction fragment length polymorphism (RFLP) in tight linkage with the disease, was hybridized in situ to metaphase chromosomes. Our results enable the D9S5 locus to be assigned to the 9q12–q13 region, thus indicating that this is also the localization of the FA gene.  相似文献   

4.
Friedreichs ataxia (FRDA) is an autosomal recessive neurodegenerative disorder commonly caused by large expansions of a GAA repeat in the first intron of the frataxin gene, FRDA. The expansion of the triplet repeat is localized within an Alu sequence. FRDA GAA-repeat alleles can be divided into three classes depending on their lengths: short normal alleles (SN), long normal alleles (LN) and expanded pathological alleles (E). We made an accurate analysis of the Alu sequence containing the GAA repeat. We found a new single-nucleotide polymorphism (SNP) that is the closest one to the GAA repeat. We studied this new SNP and the polymorphic polyA region contiguous to the GAA triplets in two populations with different frequencies of FRDA. We found that, while both E and LN alleles seem to be genetically homogeneous and likely related, SN represents a more heterogeneous class of alleles. Indeed, one SNP variation (T) was more frequently associated with (GAA)8 alleles, whereas the other one (C) with (GAA)9 repeat(s). The long normal and expanded alleles presented the C haplotype. The same correlation was described for polyA-tract polymorphisms. Thus, 14A was commonly associated with (GAA)8 alleles and 17A with (GAA)9 alleles. The long normal alleles more frequently showed the 17A haplotype. Our data seem to suggest that all the E alleles come from LN alleles, while LN alleles come from a defined subclass of SN alleles.  相似文献   

5.
Confirmation of chromosome 9p linkage in familial melanoma   总被引:8,自引:3,他引:8       下载免费PDF全文
Malignant melanoma occurs as a familial cancer in 5%–10% of cases where it segregates in a manner consistent with autosomal dominant inheritance. Evidence from cytogenetics, fine-mapping studies of deletions in melanomas, and recent linkage studies supports the location of a human melanoma predisposition gene on the short arm of chromosome 9. We have carried out linkage analysis using the 9p markers IFNA and D9S126 in 26 Australian melanoma kindreds. Multipoint analysis gave a peak lod score of 4.43, 15 cM centromeric to D9S126, although a lod score of 4.13 was also found 15 cM telomeric of IFNA. These data confirm the existence of a melanoma susceptibility gene on 9p and indicate that this locus most probably lies outside of the IFNA–D9S126 interval. No significant heterogeneity was found between families, when either pairwise or multipoint data were analyzed using HOMOG.  相似文献   

6.
We have previously assigned the Friedreich ataxia locus (FRDA) to chromosome 9; the current maximal lod score between FRDA and MCT112 (D9S15) is greater than 50 at a recombination fraction of theta = 0. The physical assignment of the locus defined by MCT112, and hence FRDA, has not been determined, although linkage analysis of MCT112 with other chromosome 9 markers inferred a location close to the centromere. We have used in situ hybridisation with MCT112, a corresponding cosmid MJ1, and DR47 (D9S5), coupled with mapping studies on hybrid cell panels, to define more precisely the location of the disease locus. The in situ location of all three probes is 9q13----q21.1, distal to the variable heterochromatin region. Physical assignment of FRDA will allow us to identify hybrid cell lines containing the mutated gene.  相似文献   

7.
Friedreich ataxia (FA) is an autosomal recessive degenerative disease of the nervous system of unknown biochemical cause. The FA gene has been shown to be in close linkage with the two chromosome 9 markers D9S5 and D9S15, and linkage disequilibrium between FA and D9S15 has been detected in French families by Hanauer et al. We used new highly informative markers at the above loci to analyze Italian FA families for linkage and linkage disequilibrium. The new markers were a three-allele BstXI RFLP at D9S5 (PIC = .55) and a six-allele microsatellite, typed by polymerase chain reaction, at D9S15 (PIC = .75). We obtained maximum lod scores of 8.25 between FA and D9S5, 10.55 between FA and D9S15, and 9.52 between D9S5 and D9S15, all at zero recombination. Our results, combined with those reported by other authors, reduce maxlod-1 (maximum lod score minus 1) confidence limits to less than 1.1 cM between FA and D9S5, 1.2 cM between FA and D9S15, and 1.4 cM between D9S5 and D9S15. Linkage disequilibrium with FA was found only for D9S15 when all families were evaluated but was also found for a D9S5/D9S15 haplotype in a subgroup of southern Italian families. We conclude that FA, D9S5, and D9S15 are tightly clustered and that studies of geographically restricted groups may reveal a limited number of mutations responsible for the disease in the Italian population. We present preliminary evidence from pulsed-field gel electrophoresis that D9S5 and D9S15 may be less than 450 kb apart. Linkage disequilibrium between FA and D9S15 suggests that the disease gene may be at an even shorter distance from this marker locus, which therefore represents a very good starting point for cloning attempts.  相似文献   

8.
Exclusion of the Friedreich ataxia gene from chromosome 19   总被引:1,自引:0,他引:1  
Summary Friedreich ataxia, a progressive neurodegenerative disorder, is an autosomal recessive disease with a carrier frequency of 1/110 in the United Kingdom. The pathophysiological basis for the disease is not known and the chromosomal location of the mutation remains unidentified. As part of an attempt to map the mutation using linked DNA markers, we demonstrate that the Friedreich ataxia gene is excluded from human chromosome 19. This study also demonstrates that the insulin receptor, which maps to chromosome 19 and may be associated with abnormal biochemical features in some patients, is not the basic defect.  相似文献   

9.
Summary We have isolated an X chromosome probe, St35.691 (DXS305), which detects two RFLPs with TaqI and PstI, whose combined heterozygosity is about 60%. This probe has been assigned to Xq28 by physical and genetic mapping and is very closely linked to DXS52, DXS15, and the coagulation factor VIII gene (F8C). The best estimate of the recombination fraction for the DXS52-DXS305 interval is 0.014, with a lod score of 50.1. Multipoint analysis places DXS305 on the same side of F8C as DXS52, but complete ordering of the three loci was not possible with our present data. This highly informative marker should be useful in the precise mapping of the many disease genes that have been assigned to the Xq28 band.  相似文献   

10.
Meuwissen TH  Goddard ME 《Genetics》2000,155(1):421-430
A multimarker linkage disequilibrium mapping method was developed for the fine mapping of quantitative trait loci (QTL) using a dense marker map. The method compares the expected covariances between haplotype effects given a postulated QTL position to the covariances that are found in the data. The expected covariances between the haplotype effects are proportional to the probability that the QTL position is identical by descent (IBD) given the marker haplotype information, which is calculated using the genedropping method. Simulation results showed that a QTL was correctly positioned within a region of 3, 1.5, or 0.75 cM in 70, 62, and 68%, respectively, of the replicates using markers spaced at intervals of 1, 0.5, and 0.25 cM, respectively. These results were rather insensitive to the number of generations since the QTL occurred and to the effective population size, except that 10 generations yielded rather poor estimates of the QTL position. The position estimates of this multimarker disequilibrium mapping method were more accurate than those from a single marker transmission disequilibrium test. A general approach for identifying QTL is suggested, where several stages of disequilibrium mapping are used with increasingly dense marker spacing.  相似文献   

11.
Friedreich ataxia is an autosomal recessive neurodegenerative disorder. The genetic homogeneity to the FRDA locus on chromosome 9q13-21.1 has been observed in families from different ancestries. We report a Spanish family with two affected and three unaffected children. The segregated classical Friedreich ataxia did not show the expected linkage. The analysis focusses on flanking markers FR1, FR2, FR7 and FR5, excluding linkage 1 cM around the FRDA locus. The unique clinical hallmark in this family was the absence of cardiomyopathy after a long-term follow-up in the two affected children. In both patients serum vitamin E levels were normal. The present observations support the existence of a second locus in Friedreich ataxia, and we suggest that this form could be clinically characterized by the absence of muscular heart disease.  相似文献   

12.
Summary Friedreich ataxia (FA) is a severe autosomal recessive neurodegenerative disease. The defective gene has been previously assigned to chromosome 9q13-q21 by demonstration of tight linkage to the two independent loci D9S15 and D9S5. Linkage data indicate that FRDA is at less than 1 cM from both markers. Previous physical mapping has shown that probes defining D9S15 (MCT112) and D9S5 (26P) are less than 260kb apart and are surrounded by at least six CpG clusters within 450 kb, which might indicate the presence of candidate genes for FA. We isolated and characterized a 530 kb YAC (yeast artificial chromosome) contig that contains five of the CpG clusters. The YACs were used to search for new polymorphic markers needed to map FRDA precisely with respect to the cloned segment. In particular, we found a (CA)n microsatellite polymorphism, GS4, that detects 13 alleles with a PIC value of 0.83 and allows the definition of haplotypes extending over 310kb when used in combination with polymorphic markers at D9S5 and D9S15.  相似文献   

13.
Summary We have isolated II-10, a new X-chromosomal probe that identifies a highly informative two-allele TaqI restriction fragment length polymorphism at locus DXS466. Using somatic cell hybrids containing distinct portions of the long arm of the X chromosome, we could localize DXS466 between DXS296 and DXS304, both of which are closely linked distal markers for fragile X. This regional localization was supported by the analysis, in fragile X families, of recombination events between these three loci, the fragile X locus and locus DXS52, the latter being located at a more distal position. DXS466 is closely linked to the fragile X locus with a peak lod score of 7.79 at a recombination fraction of 0.02. Heterozygosity of DXS466 is approximately 50%. Its close proximity and relatively high informativity make DXS466 a valuable new diagnostic DNA marker for fragile X.  相似文献   

14.
The aim of this work was to isolate new DNA markers linked to the Silene latifolia Y chromosome. To do this we created a chromosome-specific plasmid library after DOP-PCR amplification of laser-microdissected Y-chromosomes. The library screening led to the isolation of several clones yielding mostly to exclusive male specific hybridization signals. Subsequent PCR confirmed the Y-unique linkage for one of the sequences. This DNA sequence called MK17 has no homology to any known DNA sequence and it is not expressed. Based on PCR and Southern analyses, MK17 is present only in dioecious species of the Elisanthe section of the genus Silene (S. latifolia, S. dioica, and S. diclinis) and it is absent in related gynodioecious and hermaphroditic species. The mapping analysis using a panel of deletion mutants showed that MK17 is closely linked to the region controlling suppression of gynoecium development. Hence MK17 represents a valuable marker to isolate genes controlling the gynoecium development suppression on the Y chromosome of S. latifolia.  相似文献   

15.
The Friedreich's ataxia locus (FRDA) has recently been mapped to 9q13-q21 by tight linkage to D9S15 and D9S5 loci. The present lack of recombination between these loci precludes further genetic mapping and suggests that the distances involved are in the megabase range. We have established a 1-Mb map around loci D9S15 (defined by probe MCT112) and D9S5 (defined by probe DR47) and found that they are at most 260 apart. Six rare cutting site clusters were found in a 450-kb segment containing both loci. Three clusters were completely unmethylated in two cell lines tested and might correspond to CpG islands flanking transcribed sequences. Cosmid mapping of a 52-kb region around D9S5 and pulse-field gel electrophoresis analysis showed the presence of three other CpG clusters that were partially or completely methylated. Two of them were present in the cosmid clones available and were associated with sequences conserved in other vertebrate species. The CpG islands and conserved sequences presented here can be used to search for genes defective in Friedreich's ataxia.  相似文献   

16.
17.
Ataxia with oculomotor apraxia (ataxia-telangiectasia-like syndrome [AOA]; MIM 208920) is an autosomal recessive disorder characterized by ataxia, oculomotor apraxia, and choreoathetosis. These neurological features resemble those of ataxia-telangiectasia (AT), but in AOA there are none of the extraneurological features of AT, such as immunodeficiency, neoplasia, chromosomal instability, or sensitivity to ionizing radiation. It is unclear whether these patients have a true disorder of chromosomal instability or a primary neurodegenerative syndrome, and it has not been possible to identify the defective gene in AOA, since the families have been too small for linkage analysis. We have identified a new family with AOA, and we show that the patients have no evidence of chromosomal instability or sensitivity to ionizing radiation, suggesting that AOA in this family is a true primary cerebellar ataxia. We have localized the disease gene, by linkage analysis and homozygosity mapping, to a 15.9-cM interval on chromosome 9q34. This work will ultimately allow the disease gene to be identified and its relevance to other types of autosomal recessive cerebellar ataxias to be determined.  相似文献   

18.
Zinc deficiency is a critical nutritional problem in soils, restricting yield and nutritional quality of barley (Hordeum vulgare L.). Some genotypes (Zn-efficient) can produce greater yield and accumulate more Zn in seed under Zn deficiency than standard (Zn-inefficient) genotypes. However, there is little information regarding the genetics of Zn uptake/accumulation and location of genes conferring Zn efficiency in barley. Selection through molecular markers for seed Zn accumulation might be an efficient complementary breeding tool in barley. With the aim of developing molecular markers for increased accumulation of Zn in seed, a population of 150 DH lines derived from a cross between Clipper (low-Zn-accumulator) and Sahara 3771 (high-Zn-accumulator) was screened in the field and glasshouse for seed Zn concentration and content. One dominant DNA polymorphism was detected using the microsatellite-anchored fragment length polymorphism (MFLP) technique. The candidate MFLP marker was isolated from the MFLP gel, re-amplified by PCR, cloned, sequenced, and converted into simple sequence-specific and PCR-based marker. This marker, located on the short arm of chromosome 2H, might be useful for the improvement of barley nutritional quality and productivity programs in Zn-deficient environments. However, high seed Zn alone can not replace the need for Zn fertilization.  相似文献   

19.
The autosomal dominant cerebellar ataxias (ADCAs) are a clinically and genetically heterogeneous group of disorders. The clinical symptoms include cerebellar dysfunction and associated signs from dysfunction in other parts of the nervous system. So far, five spinocerebellar ataxia (SCA) genes have been identified: SCA1, SCA2, SCA3, SCA6, and SCA7. Loci for SCA4 and SCA5 have been mapped. However, approximately one-third of SCAs have remained unassigned. We have identified a Mexican American pedigree that segregates a new form of ataxia clinically characterized by gait and limb ataxia, dysarthria, and nystagmus. Two individuals have seizures. After excluding all known genetic loci for linkage, we performed a genomewide search and identified linkage to a 15-cM region on chromosome 22q13. A maximum LOD score of 4.3 (recombination fraction 0) was obtained for D22S928 and D22S1161. This distinct form of ataxia has been designated "SCA10." Anticipation was observed in the available parent-child pairs, suggesting that trinucleotide-repeat expansion may be the mutagenic mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号