首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
  • 1.1. Spike frequency adaptation has been studied on neurons of Helix pomatia subesophageal ganglia and interpreted by means of a behavioural model describing the phenomenon in neurons either silent or autorhythmic at rest.
  • 2.2. At low stimulating currents the initial discharge frequency F(0) is linearly related to the current strength G.
  • 3.3. In the linearity range F(0)/G each neuron was characterized by means of four model parameters: the proportionality constant between F(0) and G, the decay constant of the frequency, the inhibitory current from a single nerve impulse and the decay time constant of the inhibitory current.
  • 4.4. The four parameters varied in different cells with a range of 0.18–4.98 Hz/nA, 1.02–3.85 sec, 0.05–0.95 nA and 1.74–22.33 see, respectively.
  • 5.5. Experimental results have been analyzed considering inhibitory current, electrogenie sodium pump and other proposed adaptation parameters.
  相似文献   

3.
The effects of serotonin on the amplitude of summated EPSP in interneurons and on the duration of action potentials in sensory neurons, interneurons, and motoneurons involved in avoidance behavior were investigated in functionally distinct neurons isolated from theHelix pomatia nervous system. The duration of action potentials in sensory neurons was found to increase under the effects of serotonin (and this could underly the rise in EPSP amplitude), although that of interneuron and motoneuron spikes did not change. The functional significance of selective neuronal response to a rise in serotonin concentration is discussed, together with the mechanics underlying such effects.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 316–322, May–June, 1987.  相似文献   

4.
Parvalbumin-immunoreactive material was detected in the central nervous system of the snail, Helix pomatia. Each ganglion investigated contained parvalbumin-immunoreactive neurons. The molecular weight of Helix parvalbumin-immunoreactive material as determined by Western blots is about 40 kilodaltons. 45Ca2+ overlays showed that this protein binds Ca2+. In contrast to vertebrates, in Helix neurons parvalbuminlike material was not colocalized with the neurotransmitter gamma-aminobutyric acid (GABA).  相似文献   

5.
Intracellular microelectrode recordings from neurons ofHelix pomatia revealed several local zones of action potential generation both on the soma and on some of the branches of the neurons. Under certain conditions the activity of individual loci of the neuron membrane was synchronized to produce a normal action potential. It is suggested that the somatic membrane of neurons is heterogeneous in structure and consists of separate loci of an electrically excitable membrane, incorporating active and latent pacemaker zones. Neurons ofH. pomatia are characterized by two types of action potential with different triggering mechanisms: one (synaptic) type is generated under the influence of the EPSP, the other (pacemaker) arises through activation of endogenous factors for the neuron (pacemaker potentials). The interaction between synaptic and pacemaker potentials during integrative activity of the neuron is discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 88–94, January–February, 1973.  相似文献   

6.
  • 1.1. The mechanism of generation of membrane potential (MP) oscillations was studied in identified bursting neurons from the snail Helix pomatia.
  • 2.2. Long-lasting stimulation of an identified peptidergic interneuron produced a persistent bursting activity in a non-active burster.
  • 3.3. External application of calcium channel blockers (1 mM Cd2+ or 5 mM La2+) resulted in a transient increase in the slow-wave amplitude and subsequent prevention of pacemaker activity generation in bursting neurons. Application of these blockers together with endogenous neuropeptide initiating bursting activity generation, increased MP wave amplitude without prevention of bursting activity generation.
  • 4.4. Replacement of all NaCl in normal Ringer's solution with isoosmotic CaCl2, glucose or Tris-HCl produced a reversible block of bursting activity generation. Stationary current-voltage relation (CVR) of bursting neuron membrane has a region of negative resistance (NRR) and does not intersect the potential axis in threshold region for action potential (AP) generation in normal Ringer's solution. In Na-free solution stationary CVR is linear and intersects the potential axis near — 52 mV.
  • 5.5. Novel potential- and time-dependent outward (Erev = − 58 mV) current, IB, activated by hyperpolarization was found in the bursting neuron membrane. Having achieved a maximal value, this current decayed with a time constant of about 1 sec. Hyperpolarization inactivated maximal conductance, gB, responsible for IB, and depolarization abolished inactivation of gB.
  • 6.6. Short-lasting (0.01 sec) hyperpolarization of the bursting neuron membrane by inward current pulse induced the development of prolonged hyperpolarization wave lasting up to 10 sec.
  • 7.7. These results suggest that: (a) persistent bursting activity of RPal neuron in the snail Helix pomatia is not endogenous but is due to a constant activation of peptidergic synaptic inputs of these neurons; (b) Ca2+ ions do not play a pivotal role in the ionic mechanism of MP oscillations but play a determining role in the process of secretion of a peptide initiating bursting activity by the interneuron presynaptic terminal; (c) depolarizing phase of the MP wave is due to specific properties of stationary CVR and hyperpolarization phase is due to regenerative properties of hyperpolarization-activated outward current IB. The minimal mathematical version of MP oscillations based on the experimental data is presented.
  相似文献   

7.
We used the intracellular recording method to study the effect of a group of nerves in the visceral complex on the activity of a pacemaking giantneuron located in the peripheral part of the visceral ganglion in a mollusk. Single excitations of the left and right pallial, the intestinal, and the anal nerves with electrical stimuli evoked similar responses, consisting of phases of rapid depolarization (duration 100 msec, amplitude 3–5 mV) and slower hyperpolarization (duration 400 msec, amplitude 5–8 mV). The excitation also had an aftereffect, which was expressed in inhibition of the background activity of the pacemaker for several seconds. The most interesting of the functional characteristics of that response was the effects of summation. With rhythmic excitation by stimuli of low frequency (0.5–1 c/sec) the result of summation was general hyperpolarization of the neuron and the appearance of giant inhibitory postsynaptic potentials (IPSP's) with an amplitude of 12–16 mV. With higher frequency of excitation (2–3 c/sec and upward) we observed depolarization replacing the hyperpolarization of the neuron, but IPSP's of large amplitude were absent. At the end of rhythmic excitation prolonged inhibition of the pacemaker's activity, lasting some minutes, occurred in all cases. This article discusses the possible mechanisms of that type of prolonged inhibition of the pacemaker's activity, the origin of the phases in biphasic responses, and the reasons for differences in the course of summation of biphasic postsynaptic potentials.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 426–433, July–August, 1971.  相似文献   

8.
Hibernation sites and home ranges of marked snails were recorded in the field for several years. Each individual usually returned to the same relatively small hibernating area every year. Shifts between alternative hibernation areas sometimes occurred. Most of the observed non-returns can be explained by changes in spatial behaviour of the preceding season rather than disorientation. Observations and experiments show the existence of a detailed memory related to topographical features of the hibernating area and lasting for at least three years. The snails seem to orientate towards a goal area which has been memorized at the preparations for hibernation during previous years. Experiments seem to indicate the importance of chemical cues. A probably adaptive potential for very detailed memorizing of topographical cues allows for localization of hibernation areas less than 30 cm in radius, and even accurate returns to previous sites, although no traces of these are left. It seems that the supposedly primitive brain of gastropods like Helix has a capability for complex and long-term spatial memory similar to that of the vertebrate brain.  相似文献   

9.
10.
We conducted a comparative investigation of the restorative action of different sodium ion concentrations on generation of action potentials by apple snail neurons of the central nervous system kept for a prolonged period in a solution in which such ions were lacking. Of the 180 neurons investigated, 60% of the cells had lost all excitability, while 40% retained the ability to generate action potentials of normal amplitude. In neurons that ceased under these conditions to generate action potentials both independently and as the result of direct stimulation, amplitude of the action potentials and of the "overshoot" was restored after adding only 2.5–10 mM of sodium to the solution. Analogous concentrations of lithium ions did not exert a similar restorative action. They repressed the capacity of a neuron to regain excitability in the presence of small amounts of sodium ions. Increasing the external concentration of sodium after restoration of the action potentials led to a proportional decline of their amplitude. Keeping neurons in a sodium-containing solution for periods of 25 min and more caused restoration of the neuron's ability to increase linearly the amplitude of action potentials upon raising the external concentration of sodium ions.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 315–322, November–December, 1969.  相似文献   

11.
33 acetylcholine perfusions were carried out on 14 neurones RPal of a snail, 25 serotonin perfusions on 15 neurones, and 10 dopamine perfusions on 12 neurones. Frequency of unit activity (FUA) was analysed as well as its irregularity (IUA). The latter was calculated by a new method of successive comparison of the lengths of interspike intervals which accounts more adequately for causes of lengthening of each interval in comparison to evaluation of dispersion and coefficient of variation. During the neurotransmitters' action, IUA did not depend on the background IUA and the duration of its return to the background level from the moment of the beginning of neurotransmitter action. At low neurotransmitter concentrations, FUA changed less than by 0.5 spike/s. IUA assumed any values from 8 to 68 per cent and lasted for different periods from 22 to 448 s depending on the kind of neurotransmitter. At high neurotransmitter concentrations, FUA changed more than by 1 spike/s. IUA took only high values from 33 to 80 per cent and lasted only from 18 to 62 s. The value of IUA reflects the tension of neuronal processes directed to preservation of stable rhythmical activity.  相似文献   

12.
The effect of extra- and intracellularly injected prostaglandins (PG) E2 and F2 on electrical activity and responses to acetylcholine and serotonin were studied in experiments on identified neurons ofHelix pomatia. As a rule prostaglandins modified the typical electrical activity of the identified neurons: PG E2 enhanced and PG F2 depressed it. These substances mainly weakened responses of the nerve cells to mediators: PG E2 caused a greater change in the response to serotonin and PG F2 in the response to acetylcholine. Effects of the prostaglandins when injected extracellularly and intracellularly differed. The possible molecular-cellular mechanisms of the central action of prostaglandins are discussed in the light of their functional connections with other universal regulators of cellular metabolism and with proteins specific for nerve tissues.P. K. Anokhin Research Institute of Normal Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 6, pp. 580–588, November–December, 1981.  相似文献   

13.
14.
15.
16.
The effect of superlethal doses of ionizing radiation on exciting and electrical properties of giant neurons of the central nervous system of Helix pomatia has been investigated. At early times following irradiation the excitability does not significantly change whereas the membrane potential, resistance and pump-induced hyperpolarization increase. At later times, a stabilization of these parameters is followed by a diminution of resistance, a decrease of membrane potential and pump-induced hyperpolarization, and even the neuron death.  相似文献   

17.
18.
Synaptic activity of neurons giving diphasic excitatory-inhibitory potentials in response to orthodromic stimulation was recorded intracellularly. In response to stimulation of nerves by a single short pulse these neurons developed only the excitatory component of the diphasic potential, but with a longer stimulus a prolonged inhibitory phase, partly suppressing the initial excitatory component, was added. The excitatory phase appeared only when the resting potential reached a certain level. In their response to repetitive stimulation, neurons with a diphasic potential are divided into habituating and nonhabituating. The diphasic potential can also arise in response to application of acetylcholine to the soma of these neurons. It is postulated that this potential reflects the response of different receptors of the postsynaptic membrane to the same mediator. Prolonged poststimulus hyperpolarization can be obtained after repetitive orthodromic or direct stimulation of some neurons. However, as analysis of the results showed, poststimulus hyperpolarization is endogenous in origin and differs in its mechanisms from the diphasic potential.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 5, No. 2, pp. 193–200, March–April, 1973.  相似文献   

19.
Steady-state current-voltage characteristics of the membrane and ionic currents arising during changes in membrane potential in bursting neurons ofHelix pomatia were studied by the voltage clamp method. The steady-state current-voltage characteristics of the membrane were shown to have a nonlinear region. Replacement of sodium ions by Tris-HC1 ions in the external solution completely abolishes this nonlinearity. Hyperpolarization of the membrane under voltage clamp conditions leads to the development of an outward current which reaches a maximum and then is inactivated. This current has a reversal potential in the region of the potassium equilibrium potential. Depolarization of the membrane to the threshold value for excitation of uncontrollable regions of the axon hillock causes the appearance of a slow inward current. After reaching a maximum, the inward current falls to zero. A model of generation of waves in a bursting neuron is suggested.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 193–202, March–April, 1978.  相似文献   

20.
Reversal potentials of transmembrane ionic currents induced by glutamate were determined in various D neurons ofHelix pomatia. Two types of neurons were found with mean reversal potentials of –10.6±1.2 and –40.0±0.6 mV. Neurons of the first group responded under ordinary conditions to glutamate application by a volley of action potentials. Neurons of the second group did not generate action potentials under the same conditions during glutamate application. With an increase in the dose of mediator the amplitude of D responses in these neurons increased only up to a certain limit, without reaching the critical depolarization level of the cell; a fall in the external chloride ion concentration led to a decrease in their reversal potential. The possible ionic mechanisms of glutamate-dependent depolarization responses of these groups of neurons are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 572–577, November–December, 1982.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号