首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quantitative cytochemical method for ornithine decarboxylase activity   总被引:1,自引:0,他引:1  
Although decarboxylases, particularly ornithine decarboxylase, are of considerable importance in cell metabolism, it has been impossible to demonstrate their activity histochemically, as this depends on trapping carbon dioxide at neutral pH values. A new reagent, lead hydroxyisobutyrate, has been shown capable of such trapping. It has been applied to the demonstration of ornithine decarboxylase activity in mouse kidney. Optimal concentrations of substrate, co-factor and trapping agent, as well as the pH optimum, have been determined for cryostat sections stabilized with a collagen polypeptide. The activity was inhibited by the specific ornithine decarboxylase inhibitor alpha-difluoromethyl ornithine.  相似文献   

2.
A monoclonal antibody of the immunoglobulin M class was produced against mouse kidney ornithine decarboxylase. Screening for the antibody was carried out using alpha-difluoromethyl[5-3H]ornithine-labelled ornithine decarboxylase. The antibody reacted with this antigen and with native ornithine decarboxylase. The antibody attached to Sepharose could be used to form an immunoaffinity column that retained mammalian ornithine decarboxylase. The active enzyme could then be eluted in a highly purified form by 1.0M-sodium thiocyanate. The monoclonal antibody could also be used to precipitate labelled ornithine decarboxylase from homogenates of kidneys from androgen-treated mice given [35S]methionine. Only one band, corresponding to Mr of about 55000, was observed. The extensive labelling of this band is consistent with the rapid turnover of ornithine decarboxylase protein, since this enzyme represents only about 1 part in 10000 of the cytosolic protein.  相似文献   

3.
Aging of IMR-90 human diploid fibroblasts in vitro is accompanied by significant changes of polyamine metabolism, most notably, a 5-fold decrease of serum-induced activity of ornithine decarboxylase, the key enzyme in the biosynthesis of polyamines (Chen, K. Y., Chang, Z. F., and Liu, A. Y.-C. (1986) J. Cell. Physiol. 129, 142-146). In this paper, we employed Northern blot hybridization and affinity radiolabeling techniques to investigate the molecular basis of this age-associated change of ornithine decarboxylase activity. Since the induction of ornithine decarboxylase by serum is a mid-G1 event, we also examined expressions of other cell cycle-dependent genes that are induced before and after the mid-G1 phase to determine if their expressions may also be age-dependent. Our results demonstrated a 3-fold decrease of the amount of active ornithine decarboxylase molecules that can be labeled by alpha-difluoromethyl[3H]ornithine in senescent IMR-90 cells (population doubling level (PDL) = 52) as compared to young cells (PDL = 22). However, the levels and kinetics of induction of ornithine decarboxylase mRNA in both young and senescent IMR-90 cells were found to be identical throughout a 24-h time period after serum stimulation. The time course and the magnitude of the expression of c-myc, an early G1 gene, were quite similar in young and senescent IMR-90 cells and appeared to be PDL-independent. In contrast, the expression of thymidine kinase, a late G1/S gene, was significantly reduced in senescent IMR-90 cells. Levels of thymidine kinase mRNA and thymidine kinase activity in senescent IMR-90 cells were 6- and 8-fold less than those in young cells, respectively. Based on these data, we proposed that impairment of cell cycling in senescent IMR-90 cells may occur at the late G1/S phase and that decreases of ornithine decarboxylase activity and putrescine accumulation during cell senescence may contribute to this impairment.  相似文献   

4.
A transitory increase in ornithine decarboxylase (ODC) activity is shown not to be a prerequisite for the differentiation induced by hexamethylene bisacetamide (HMBA) in murine erythroleukemic (MEL) cells. On the contrary, conditions are described, where inhibition of the ODC activity with alpha-difluoromethyl ornithine (DFMO) stimulated the induced differentiation. Polyamine analysis demonstrated that a reduction in intracellular putrescine and spermidine occurred in MEL cells before commitment to erythrodifferentiation. The presence of DFMO increased the rapidity and the amplitude of these changes. No effect of dexamethasone on these changes in ODC activity or intracellular polyamines was observed.  相似文献   

5.
Various hormonal and non-hormonal agents were tested for their ability to induce ornithine decarboxylase (EC 4.1.1.17) in primary cultures of fetal rat liver cells that retain many of the differentiated functions of hepatocytes. The only agents to induce ornithine decarboxylase in this cell type were fetal calf serum, prostaglandin E1 and cyclic AMP derivatives. Also, the amino acid arginine would induce ornithine decarboxylase in this cell type following arginine starvation for 24 h. These observations are in contrast to the wide range of hormones, e.g. insulin, hydrocortisone, glucagon and growth hormone, than can induce ornithine decarboxylase in vivo in the adult rat liver but which are all without effect on fetal rat liver cells.  相似文献   

6.
Various hormonal and non-hormonal agents were tested for their ability to induce ornithine decarboxylase (EC 4.1.1.17) in primary cultures of fetal rat liver cells that retain many of the differentiated functions of hepatocytes. The only agents to induce ornithine decarboxylase in this cell type were fetal calf serum, prostaglandin E1 and cyclic AMP derivatives. Also, the amino acid arginine would induce ornithine decarboxylase in this cell type following arginine starvation for 24 h. These observations are in contrast to the wide range of hormones, e.g. insulin, hydrocotisone, glucagon and growth hormone, that can induce ornithine decarboxylase in vivo in the adult rat liver but which are all without effect on fetal rat liver cells.  相似文献   

7.
Translational regulation of mammalian ornithine decarboxylase by polyamines   总被引:19,自引:0,他引:19  
Ornithine decarboxylase, which catalyses the formation of putrescine, is the first and rate-limiting enzyme in the biosynthesis of polyamines in mammalian cells. The enzyme is highly regulated, as indicated by rapid changes in its mRNA and protein during cell growth. Here we report that ornithine decarboxylase is regulated at the translational level by polyamines in difluoromethylornithine-resistant mouse myeloma cells that overproduce the enzyme due to amplification of an ornithine decarboxylase gene. When such cells are exposed to putrescine or other polyamines, there is a rapid and specific decrease in the rate of synthesis of ornithine decarboxylase, assayed by pulse-labeling. Neither the cellular content of ornithine decarboxylase mRNA nor the half-life of ornithine decarboxylase protein is affected. Our results indicate that polyamines negatively regulate the translation of ornithine decarboxylase mRNA, thereby controlling their own synthesis.  相似文献   

8.
Both mouse interferon-beta (MuIFN-beta) and the inhibitor of ornithine decarboxylase (ODC), alpha-difluoromethyl ornithine (DFMO), inhibited the differentiation of mouse 3T3-L1 fibroblasts into adipocytes in a dose-dependent manner. DFMO and MuIFN-beta added together to cultures that were induced to differentiate produced an additive anti-differentiation effect. In contrast to this additive cellular effect, DFMO reduced the antiviral activity of MuIFN-beta in both undifferentiated and differentiated cells; DFMO alone had no detectable effect on replication of encephalomyocarditis virus. Putrescine, the product of ornithine decarboxylation, when added to 3T3-L1 cultures (i) enhanced differentiation, (ii) reversed completely the inhibition of differentiation by DFMO, but (iii) had little effect on the antidifferentiation effect of MuIFN-beta. Polyamine content changed four-fold or less in cultures treated with 0.5 mM DFMO and less than two-fold in cultures treated with 100 IU/ml MuIFN-beta for seven days. Thus, it appears not only that MuIFN-beta and DFMO inhibit differentiation of 3T3-L1 cells by different mechanisms but also that the antiviral action of IFN does not involve the regulation of polyamine metabolism by ornithine decarboxylase.  相似文献   

9.
A previous study has shown that the activity of ornithine decarboxylase in cultured Nb2 node rat lymphoma cells falls to undetectable levels when cells become quiescent following incubation in lactogen (prolactin)-deficient medium. In the present study, it was found that addition of extracts of the lactogen-deprived, quiescent cells to extracts of log-phase cells markedly reduced the ornithine decarboxylase activity of the latter, the inhibitory activity being proportional to the amount of quiescent cell extract added. Evidence is presented that the ornithine decarboxylase-inhibitory activity in the quiescent cell extracts is due to an antizyme-like, polypeptide factor with an Mr of approx. 28,000. The activity of the inhibitor appears to be directed rather specifically against ornithine decarboxylase, since the activities of S-adenosylmethionine decarboxylase, thymidine kinase and uridine kinase were not affected. The Nb2 cell ornithine decarboxylase inhibitor may have an important role in modulating the cellular levels of ornithine decarboxylase as they change in response to the withdrawal and restoration of extracellular mitogenic lactogens.  相似文献   

10.
The mechanisms by which topically applied retinoic acid to mouse skin inhibits tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced epidermal ornithine decarboxylase activity were analyzed. Retinoic acid inhibition of the induction of epidermal ornithine decarboxylic activity was not the result of nonspecific cytotoxicity, production of a soluble inhibitor of ornithine decarboxylase, or direct effect on its activity. In addition, inhibition of TPA-caused increased ornithine decarboxylase activity does not appear to be due to enhanced degradation and/or post-translational modification of ornithine decarboxylase by transglutaminase-mediated putrescine incorporation. We found that retinoic acid inhibits the synthesis of ornithine decarboxylase caused by TPA. Application of 10 nmol TPA to mouse skin led to a dramatic induction of epidermal ornithine decarboxylase activity which was paralled by increased [3H]difluoromethylornithine binding and an increased incorporation of [35S]methionine into the enzyme. Application of 17 nmol retinoic acid 1 h prior to application of 10 nmol TPA to skin resulted in inhibition of the induction of activity which accompanied inhibition of [3H]difluoromethylornithine binding and [35S]methionine incorporation into ornithine decarboxylase protein as determined by the tube-gel electrophoresis of the enzyme immunoprecipitated with monoclonal antibodies to it. Inhibition of ornithine decarboxylase synthesis was not the result of the inhibitory effect of retinoic acid on general protein synthesis. The results indicate that retinoic acid possibly inhibits TPA-caused synthesis of ornithine decarboxylase protein selectively.  相似文献   

11.
Diamine oxidase and ornithine decarboxylase activities are shown to have a parallel distribution across rat small intestine mucosa; levels of both enzyme activities are sharply higher in mature cells in the villus tip region than in proliferating cells in the crypt areas. Histidine decarboxylase levels were not measurable in the same cell preparations and aromatic-L-amino-acid decarboxylase activity was distributed in an opposite pattern to diamine oxidase and ornithine decarboxylase. The results suggest that intestinal diamine oxidase could be involved with polyamine metabolism. The new findings for ornithine decarboxylase suggest an in vivo role for polyamines in non-proliferative cells; rat small intestinal mucosa may be an excellent model for investigating the function of polyamines in regenerating cells.  相似文献   

12.
A human neuroblastoma cell line with an altered ornithine decarboxylase   总被引:5,自引:0,他引:5  
A human neuroblastoma cell line (Paju) was resistant to 10 mM difluoromethylornithine, a concentration at which the growth of all mammalian cells normally stops. Ornithine decarboxylase from Paju was very resistant to inhibition by difluoromethylornithine in vitro (Ki = 10 microM compared to 0.5 microM for mouse kidney ornithine decarboxylase). After purification, apparently homogeneous Paju ornithine decarboxylase was inactivated with [3H]difluoromethylornithine and analyzed by polyacrylamide gel electrophoresis. Under denaturing conditions it was found to have an altered molecular structure, i.e. two nonidentical subunits of Mr = 55,000 and 60,000. Another unusual feature of Paju ornithine decarboxylase was its long half-life in vivo (T 1/2 = 8 h compared with 36 min in human HL-60 promyelocytic leukemia cells). The disappearance of immunoreactive protein was only slightly slower than the loss of catalytic activity. The long half-life of Paju ornithine decarboxylase was not shared by adenosylmethionine decarboxylase. Despite the altered structure of Paju ornithine decarboxylase, it was recognized by a specific antisera raised in rabbit against mouse kidney ornithine decarboxylase. The Paju karyotype did not contain double minute chromosomes or any large homogeneously staining region such as that seen in a mouse lymphoma cell mutant that is resistant to difluoromethylornithine and overproduces ornithine decarboxylase (McConlogue, L., and Coffino, P. (1983) J. Biol. Chem. 258, 12083-12086).  相似文献   

13.
Diamine oxidase and ornithine decarboxylase activities are shown to have a parallel distribution across rat small intestine mucosa; levels of both enzyme activities are sharply higher in mature cells in the villus tip region than in proliferating cells in the crypt areas. Histidine decarboxylase levels were not measurable in the same cell preparations and aromatic-L-amino-acid decarboxylase activity was distributed in an opposite pattern to diamine oxidase and ornithine decarboxylase. The results suggest that intestinal diamine oxidase could be involved with polyamine metabolism. The new findings for ornithine decarboxylase suggest an in vivo role for polyamines in non-proliferative cells; rat small intestinal mucosa may be an excellent model for investigating the function of polyamines in regenerating cells.  相似文献   

14.
Ornithine decarboxylase is the initial and rate-limiting enzyme in the polyamine biosynthetic pathway. Polyamines are found in all mammalian cells and are required for cell growth. We previously demonstrated that N-hydroxyarginine and nitric oxide inhibit tumor cell proliferation by inhibiting arginase and ornithine decarboxylase, respectively, and, therefore, polyamine synthesis. In addition, we showed that nitric oxide inhibits purified ornithine decarboxylase by S-nitrosylation. Herein we provide evidence for the chemical mechanism by which nitric oxide and S-nitrosothiols react with cysteine residues in ornithine decarboxylase to form an S-nitrosothiol(s) on the protein. The diazeniumdiolate nitric oxide donor agent 1-diethyl-2-hydroxy-2-nitroso-hydrazine acts through an oxygen-dependent mechanism leading to formation of the nitrosating agents N(2)O(3) and/or N(2)O(4). S-Nitrosoglutathione inhibits ornithine decarboxylase by an oxygen-independent mechanism likely by S-transnitrosation. In addition, we provide evidence for the S-nitrosylation of 4 cysteine residues per ornithine decarboxylase monomer including cysteine 360, which is critical for enzyme activity. Finally S-nitrosylated ornithine decarboxylase was isolated from intact cells treated with nitric oxide, suggesting that nitric oxide may regulate ornithine decarboxylase activity by S-nitrosylation in vivo.  相似文献   

15.
The multiplication of A. culbertsoni in the peptone medium was not inhibited by 10-20 mM concentration of alpha-difluoromethyl ornithine (DMFO) while a partial and transient inhibition of cell multiplication was observed by 10-20 mM DFMO in proteose peptone, yeast extract, glucose (PYG) medium. Ornithine decarboxylase (ODC) activity in the cells and cell free extracts was strongly inhibited by DFMO, excluding enzyme refractoriness and impermeability of cells for DFMO as the possible causes of DFMO resistance. The presence of polyamines in the peptone and PYG media as well as uptake of polyamines by the amoebae has been demonstrated. The growth and multiplication of A. culbertsoni in chemically defined medium was not affected by 1-5 mM DFMO while 10-20 mM DMFO yielded partial inhibition. A lowering of diaminopropane levels and enhancement of spermidine levels was observed in DFMO inhibited cells and level of ODC was drastically reduced in the inhibited cultures. Uptake of polyamines from the growth media may partly account for DFMO resistance of A. culbertsoni. Alternative mechanisms for DFMO resistance are indicated.  相似文献   

16.
The mitogenic action of prolactin in Nb 2 node lymphoma cells was inhibited by two drugs which interfere with polyamine biosynthesis. At concentrations of 0.5 mM and above alpha-difluoromethyl ornithine (DFMO), which inhibits ornithine decarboxylase and the conversion of ornithine to putrescine, significantly attenuated the mitogenic effect of prolactin. This inhibition was prevented by the addition of putrescine, spermidine, or spermine to the culture medium. At concentrations of 1 microM and above methylglyoxal bis(guanylhydrazone) (MGBG), which inhibits S-adenosylmethionine decarboxylase and hence the conversion of putrescine to spermidine and spermine, abolished the mitogenic action of prolactin. This inhibition was prevented by the addition of spermidine or spermine, but not putrescine, to the culture medium. These studies show that ongoing polyamine biosynthesis is essential for prolactin to express its mitogenic effect in this lymphoma cell line.  相似文献   

17.
Mutant mouse lymphoma cells that overproduce ornithine decarboxylase have been generated by selection for resistance to difluoromethylornithine, an inhibitor of the enzyme. Starting with wild type S49 mouse lymphoma cells, sensitive to growth inhibition by 10 microM difluoromethylornithine, we obtained the Z.12 line, which is approximately 100 times more resistant to that drug (McConlogue, L., and Coffino, P. (1983) J. Biol. Chem. 258, 8384-8388). Subsequent selection for still higher levels of resistance was applied to the Z.12 cells and resulted in the generation of the D4.1 line, resistant to 10 mM difluoromethylornithine. The relative synthesis of ornithine decarboxylase in wild type, Z.12, and D4.1 cells was assessed by pulse labeling these cells with [35S]methionine and analyzing the radiolabeled proteins directly, or after immunoprecipitation, on sodium dodecyl sulfate-polyacrylamide gels. As shown previously, the rate of ornithine decarboxylase synthesis is augmented in Z.12 as compared to wild type. In D4.1 cells, the rate of synthesis of ornithine decarboxylase exceeds that of any other single protein; about 15% of total protein synthesis is devoted to the enzyme. The relative amounts of translatable ornithine decarboxylase mRNA in each cell line was determined by in vitro translation of extracted RNA. These results showed that the relative rate of synthesis in each cell line is a reflection of the cell's relative content of translatable ornithine decarboxylase mRNA. Examination of the chromosomes of wild type and D4.1 cells revealed that the former are pseudodiploid and the latter tetraploid. Two of the four chromosomes 14 in D4.1 contain large homogeneously staining regions, a finding consistent with the presence of regions of gene amplification.  相似文献   

18.
Polyamines are associated with fundamental metabolic and functional steps in cell metabolism. The activity of ornithine decarboxylase, the key enzyme in polyamine metabolism, was followed during the preparation of rat liver parenchymal cells and in the isolated cells during incubation. In experiments in which ornithine decarboxylase was not induced in vivo, enzyme activity dropped to barely measurable values during the preparation. An even more drastic loss of enzyme activity was noted in livers in which ornithine decarboxylase activity was stimulated in vivo 20-40fold by previous injection of bovine growth hormone, or thioacetamide or elevated because of circadian rhythmical changes of the enzyme activity. Within the first 20 min of liver perfusion to disintegrate the tissue, ornithine decarboxylase activity decreased by up to 80%. The presence of bovine growth hormone during cell preparation cannot prevent the loss of enzyme activity. Incubation of the isolated cells for periods of up to 240 min did not restore the enzyme activity. Furthermore, incubation of the cells with bovine growth hormone did not induce ornithine decarboxylase, even though the medium was supplemented with amino acids in physiological concentrations. During normal liver perfusion and in contrast to the situation with isolated cells, there is no loss of enzyme activity but a small rise. Following pretreatment of the animals with bovine growth hormone or thioacetamide the highly stimulated activity of ornithine decarboxylase declined slowly during liver perfusion, but never dropped to values lower than normal for perfusion periods of up to 240 min. Moreover, in the intact perfused organ ornithine decarboxylase remains responsive to bovine growth hormone. The experiments demonstrate that enzymatic tissue dispersion by collagenase in particular or the preparation of isolated cells in general drastically alters the metabolic and functional state of rat liver parenchymal cells.  相似文献   

19.
20.
We have isolated from an arginase-deficient polyamine-dependent Chinese hamster ovary cell line a new mutant strain that has greatly increased ornithine decarboxylase activity. This enables the cells, in the absence of ornithine, to decarboxylate lysine into cadaverine (diaminopentane) that is further converted into N-(3-aminopropyl)cadaverine and N,N'-bis(3-aminopropyl)cadaverine. These unusual polyamines can support the growth of the cells without added polyamines derived from ornithine. Immunoreactive ornithine decarboxylase-like protein was clearly increased in the mutant cells but could not solely account for the greatly increased enzyme activity. Southern blot analysis of DNA hybridized to a plasmid carrying ornithine decarboxylase-cDNA revealed at least a 32-fold amplification of the ornithine decarboxylase gene. Ornithine decarboxylase-mRNA concentration was also highly increased in the cells. The half-life of the enzyme and the Km for ornithine were not altered from those of the parental cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号