首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The energetics of binding of MgADP to the isolated beta subunit of F(1)-ATPase from thermophilic Bacillus (Tbeta) was characterized by high-precision isothermal titration calorimetry. The reaction was enthalpically driven, with a DeltaCp of -36cal(molK)(-1). To gain insight into the molecular basis of this small DeltaCp, we analyzed the changes in accessible surface areas (DeltaASA) between the structures of empty and MgADP-filled beta subunits, extracted from the crystal structure of bovine heart F(1). Consistent with the experimental DeltaCp, the DeltaASA was small (-775A(2)). We used a reported surface area model developed for protein reactions to calculate DeltaCp and DeltaH from DeltaASA, obtaining good agreement with the experimental values. Conversely, using the same model, a DeltaASA of -770A(2) was estimated from experimental DeltaCp and DeltaH for the Tbeta-MgADP complex. Our structural-energetic study indicates that on MgADP binding the isolated Tbeta subunit exhibits intrinsic structural changes similar to those observed in F(1).  相似文献   

2.
The Oxytricha nova telemere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (DeltaH), entropy (DeltaS), and dissociation constant (K(D-DNA)) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T(2)G(4)), d(T(4)G(4)), d(G(3)T(4)G(4)), and d(G(4)T(4)G(4)) each formed monovalent protein complexes. In the case of d(T(4)G(4)T(4)G(4)), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity "A site" has a dissociation constant, K(D-DNA(A)) = 13(+/-4) nM, while the low-affinity "B site" is characterized by K(D-DNA(B)) = 5600(+/-600) nM at 25 degrees C. Nucleotide substitution variants verified that the A site corresponds principally with the 3'-terminal portion of d(T(4)G(4)T(4)G(4)). The relative contributions of entropy (DeltaS) and enthalpy (DeltaH) for binding reactions were DNA length-dependent as was heat capacity (DeltaCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA-protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology.  相似文献   

3.
A G Kozlov  T M Lohman 《Biochemistry》1999,38(22):7388-7397
Isothermal titration calorimetry (ITC) was used to test the hypothesis that the relatively small enthalpy change (DeltaHobs) and large negative heat capacity change (DeltaCp,obs) observed for the binding of the Escherichia coli SSB protein to single-stranded (ss) oligodeoxyadenylates result from the temperature-dependent adenine base unstacking equilibrium that is thermodynamically coupled to binding. We have determined DeltaH1,obs for the binding of 1 mole of each of dT(pT)34, dC(pC)34, and dA(pA)34 to the SSB tetramer (20 mM NaCl at pH 8.1). For dT(pT)34 and dC(pC)34, we found large, negative values for DeltaH1,obs of -75 +/- 1 and -85 +/- 2 kcal/mol at 25 degrees C, with DeltaCp,obs values of -540 +/- 20 and -570 +/- 30 cal mol-1 K-1 (7-50 degrees C), respectively. However, for SSB-dA(pA)34 binding, DeltaH1,obs is considerably less negative (-14 +/- 1 kcal/mol at 25 degrees C), even becoming positive at temperatures below 13 degrees C, and DeltaCp,obs is nearly twice as large in magnitude (-1180 +/- 40 cal mol-1 K-1). These very different thermodynamic properties for SSB-dA(pA)34 binding appear to result from the fact that the bases in dA(pA)34 are more stacked at any temperature than are the bases in dC(pC)34 or dT(pT)34 and that the bases become unstacked within the SSB-ssDNA complexes. Therefore, the DeltaCp,obs for SSB-ssDNA binding has multiple contributions, a major one being the coupling to binding of a temperature-dependent conformational change in the ssDNA, although SSB binding to unstacked ssDNA still has an "intrinsic" negative DeltaCp,0. In general, such temperature-dependent changes in the conformational "end states" of interacting macromolecules can contribute significantly to both DeltaCp,obs and DeltaHobs.  相似文献   

4.
Studies performed in our laboratory demonstrated the formation of two thermodynamically distinct complexes on binding of netropsin to a number of hairpin-forming DNA sequences containing AATT-binding regions. These two complexes were proposed to differ only by a bridging water molecule between the drug and the DNA in the lower affinity complex. A temperature-dependent isothermal titration calorimetry (ITC)-binding study was performed using one of these constructs (a 20-mer hairpin of sequence 5'-CGAATTCGTCTCCGAATTCG) and netropsin. This study demonstrated a break in the heat capacity change for the formation of the complex containing the bridging water molecule at approximately 303 K. In the plot of the binding enthalpy change versus temperature, the slope (DeltaCp) was -0.67 kcal mol-1 K-1 steeper after the break at 303 K. Because of the relatively low melting temperature of the 20-mer hairpin (341 K (68 degrees C)), the enthalpy change for complex formation might have included some energy of refolding of the partially denatured hairpin, giving the suggestion of a larger DeltaCp. Studies done on the binding of netropsin to similar constructs, a 24-mer and a 28-mer, with added GC basepairs in the hairpin stem to increase thermal stability, exhibit the same nonlinearity in DeltaCp over the temperature range of from 275 to 333 K. The slopes (DeltaCp) were -0.69 and -0.64 kcal mol-1 K-1 steeper after 303 K for the 24-mer and 28-mer, respectively. This observation strengthens the argument regarding the presence of a bridging water molecule in the lower affinity netropsin/DNA complex. The DeltaCp data seem to infer that because the break in the heat capacity change function for the lower affinity binding occurs at the isoequilibrium temperature for water, water may be included or trapped in the complex. The fact that this break does not occur in the heat capacity change function for formation of the higher affinity complex can similarly be taken as evidence that water is not included in the higher affinity complex.  相似文献   

5.
Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein-protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (K(D-DNA)=1.4 nM). Another fusion protein, constructed without the C-terminal protein-protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (K(D-DNA)=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA-protein stability to protein-protein contacts at a remote site may provide a trigger point for DNA-protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase.  相似文献   

6.
Isothermal titration calorimetry has been used to investigate the thermodynamic parameters of the binding of thymidine (dT) and ATP to herpes simplex virus type 1 thymidine kinase (HSV1 TK). Binding follows a sequential pathway in which dT binds first and ATP second. The free enzyme does not bind ATP, whose binding site becomes only accessible in the HSV1 TK.dT complex. At pH 7.5 and 25 degrees C, the binding constants are 1.9 x 10(5) m(-1) for dT and 3.9 x 10(6) m(-1) for ATP binding to the binary HSV1 TK.dT complex. Binding of both substrates is enthalpy-driven and opposed by a large negative entropy change. The heat capacity change (DeltaCp) obtained from DeltaH in the range of 10-25 degrees C is -360 cal K(-1) mol(-1) for dT binding and -140 cal K(-1) mol(-1) for ATP binding. These large DeltaCp values are incompatible with a rigid body binding model in which the dT and ATP binding sites pre-exist in the free enzyme. Values of DeltaCp and TDeltaS strongly indicate large scale conformational adaptation of the active site in sequential substrate binding. The conformational changes seem to be more pronounced in dT binding than in the subsequent ATP binding. Considering the crystal structure of the ternary HSV1 TK.dT.ATP complex, a large movement in the dT binding domain and a smaller but substantial movement in the LID domain are proposed to take place when the enzyme changes from the substrate-free, presumably more open and less ordered conformation to the closed and compact conformation of the ternary enzyme-substrate complex.  相似文献   

7.
Rice proteins that bind single-stranded G-rich telomere DNA   总被引:4,自引:0,他引:4  
In this work, we have identified and characterized proteins in rice nuclear extracts that specifically bind the single-stranded G-rich telomere sequence. Three types of specific DNA-protein complexes (I, II, and III) were identified by gel retardation assays using synthetic telomere substrates consisting of two or more single-stranded TTTAGGG repeats and rice nuclear extracts. Since each complex has a unique biochemical property and differs in electrophoretic mobility, at least three different proteins interact with the G-rich telomere sequences. These proteins are called rice G-rich telomere binding protein (RGBP) and none of them show binding affinity to double-stranded telomere repeats or single-stranded C-rich sequence. Changing one or two G's to C's in the TTTAGGG repeats abolishes binding activity. RGBPs have a greatly reduced affinity for human and Tetrahymena telomeric sequence and do not efficiently bind the cognate G-rich telomere RNA sequence UUUAGGG. Like other telomere binding proteins, RGBPs are resistant to high salt concentrations. RNase sensitivity of the DNA-protein interactions was tested to investigate whether an RNA component mediates the telomeric DNA-protein interaction. In this assay, we observed a novel complex (complex III) in gel retardation assays which did not alter the mobilities or the band intensities of the two pre-existing complexes (I and II). The complex III, in addition to binding to telomeric sequences, has a binding affinity to rice nuclear RNA, whereas two other complexes have a binding affinity to only single-stranded G-rich telomere DNA. Taken together, these studies suggest that RGBPs are new types of telomere-binding proteins that bind in vitro to single-stranded G-rich telomere DNA in the angiosperms.  相似文献   

8.
Glucokinase (GK) is a key enzyme of glucose metabolism in liver and pancreatic beta-cells, and small molecule activators of GK (GKAs) are under evaluation for the treatment of type 2 diabetes. In liver, GK activity is controlled by the GK regulatory protein (GKRP), which forms an inhibitory complex with the enzyme. Here, we performed isothermal titration calorimetry and surface plasmon resonance experiments to characterize GK-GKRP binding and to study the influence that physiological and pharmacological effectors of GK have on the protein-protein interaction. In the presence of fructose-6-phosphate, GK-GKRP complex formation displayed a strong entropic driving force opposed by a large positive enthalpy; a negative change in heat capacity was observed (Kd = 45 nm, DeltaH = 15.6 kcal/mol, TDeltaS = 25.7 kcal/mol, DeltaCp = -354 cal mol(-1) K(-1)). With k(off) = 1.3 x 10(-2) s(-1), the complex dissociated quickly. The thermodynamic profile suggested a largely hydrophobic interaction. In addition, effects of pH and buffer demonstrated the coupled uptake of one proton and indicated an ionic contribution to binding. Glucose decreased the binding affinity between GK and GKRP. This decrease was potentiated by an ATP analogue. Prototypical GKAs of the amino-heteroaryl-amide type bound to GK in a glucose-dependent manner and impaired the association of GK with GKRP. This mechanism might contribute to the antidiabetic effects of GKAs.  相似文献   

9.
10.
This work describes differential effects of solvent in complexes of the aminoglycoside phosphotransferase(3')-IIIa (APH) with different aminoglycosides and the detection of change in solvent structure at specific sites away from substrates. Binding of kanamycins to APH occurs with a larger negative DeltaH in H2O relative to D2O (DeltaDeltaH(H2O-D2O) < 0), while the reverse is true for neomycins. Unusually large negative DeltaCp values were observed for binding of aminoglycosides to APH. DeltaCp for the APH-neomycin complex was -1.6 kcal x mol(-1) x deg(-1). A break at 30 degrees C was observed in the APH-kanamycin complex yielding DeltaCp values of -0.7 kcal x mol(-1) x deg(-1) and -3.8 kcal x mol(-1) x deg(-1) below and above 30 degrees C, respectively. Neither the change in accessible surface area (DeltaASA) nor contributions from heats of ionization were sufficient to explain the large negative DeltaCp values. Most significantly, 15N-1H HSQC experiments showed that temperature-dependent shifts of the backbone amide protons of Leu 88, Ser 91, Cys 98, and Leu143 revealed a break at 30 degrees C only in the APH-kanamycin complex in spectra collected between 21 degrees C and 38 degrees C. These amino acids represent solvent reorganization sites that experience a change in solvent structure in their immediate environment as structurally different ligands bind to the enzyme. These residues were away from the substrate binding site and distributed in three hydrophobic patches in APH. Overall, our results show that a large number of factors affect DeltaCp and binding of structurally different ligand groups cause different solvent structure in the active site as well as differentially affecting specific sites away from the ligand binding site.  相似文献   

11.
mRNA 5'-cap recognition by the eukaryotic translation initiation factor eIF4E has been exhaustively characterized with the aid of a novel fluorometric, time-synchronized titration method, and X-ray crystallography. The association constant values of recombinant eIF4E for 20 different cap analogues cover six orders of magnitude; with the highest affinity observed for m(7)GTP (approximately 1.1 x 10(8) M(-1)). The affinity of the cap analogues for eIF4E correlates with their ability to inhibit in vitro translation. The association constants yield contributions of non-covalent interactions involving single structural elements of the cap to the free energy of binding, giving a reliable starting point to rational drug design. The free energy of 7-methylguanine stacking and hydrogen bonding (-4.9 kcal/mol) is separate from the energies of phosphate chain interactions (-3.0, -1.9, -0.9 kcal/mol for alpha, beta, gamma phosphates, respectively), supporting two-step mechanism of the binding. The negatively charged phosphate groups of the cap act as a molecular anchor, enabling further formation of the intermolecular contacts within the cap-binding slot. Stabilization of the stacked Trp102/m(7)G/Trp56 configuration is a precondition to form three hydrogen bonds with Glu103 and Trp102. Electrostatically steered eIF4E-cap association is accompanied by additional hydration of the complex by approximately 65 water molecules, and by ionic equilibria shift. Temperature dependence reveals the enthalpy-driven and entropy-opposed character of the m(7)GTP-eIF4E binding, which results from dominant charge-related interactions (DeltaH degrees =-17.8 kcal/mol, DeltaS degrees= -23.6 cal/mol K). For recruitment of synthetic eIF4GI, eIF4GII, and 4E-BP1 peptides to eIF4E, all the association constants were approximately 10(7) M(-1), in decreasing order: eIF4GI>4E-BP1>eIF4GII approximately 4E-BP1(P-Ser65) approximately 4E-BP1(P-Ser65/Thr70). Phosphorylation of 4E-BP1 at Ser65 and Thr70 is insufficient to prevent binding to eIF4E. Enhancement of the eIF4E affinity for cap occurs after binding to eIF4G peptides.  相似文献   

12.
DNA binding of Klenow polymerase has been characterized with respect to temperature to delineate the thermodynamic driving forces involved in the interaction of this polymerase with primed-template DNA. The temperature dependence of the binding affinity exhibits distinct curvature, with tightest binding at 25-30 degrees C. Nonlinear temperature dependence indicates Klenow binds different primed-template constructs with large heat capacity (DeltaCp) values (-870 to -1220 cal/mole K) and thus exhibits large temperature dependent changes in enthalpy and entropy. Binding is entropy driven at lower temperatures and enthalpy driven at physiological temperatures. Large negative DeltaCp values have been proposed to be a 'signature' of site-specific DNA binding, but type I DNA polymerases do not exhibit significant DNA sequence specificity. We suggest that the binding of Klenow to a specific DNA structure, the primed-template junction, results in a correlated thermodynamic profile that mirrors what is commonly seen for DNA sequence-specific binding proteins. Klenow joins a small number of other DNA-sequence independent DNA binding proteins which exhibit unexpectedly large negative DeltaCp values. Spectroscopic measurements show small conformational rearrangements of both the DNA and Klenow upon binding, and small angle x-ray scattering shows a global induced fit conformational compaction of the protein upon binding. Calculations from both crystal structure and solution structural data indicate that Klenow DNA binding is an exception to the often observed correlation between DeltaCp and changes in accessible surface area. In the case of Klenow, surface area burial can account for only about half of the DeltaCp of binding.  相似文献   

13.
Telomere DNA at the physical termini of chromosomes forms a single-stranded 3' overhang. In lower eukaryotes, e.g., ciliated protozoa, this DNA extension is capped by specific proteins that have been structurally and functionally characterized. Much less is known about single-stranded telomere DNA-binding proteins in vertebrates. Here we describe a new protein from bovine sperm designated bsSSTBP that specifically interacts with single-stranded (TTAGGG)(N) DNA. The bsSSTBP was extracted from nuclei by 0.6 M KCl. The native size of this protein, estimated by gel filtration, was 20-40 kDa. SDS-PAGE of the UV cross-linked complex between bsSSTBP and telomere DNA indicated that several polypeptides are involved in complex formation. Bovine sSSTB had high specificity toward nucleotide sequence, since single nucleotide substitutions in the (TTAGGG)(4) substrate suppressed binding. The minimal number of (TTAGGG) repeats required for binding of bsSSTBP was 3, and the protein recognized linear but not folded DNA structures. We propose that the bsSSTBP participates in telomere-telomere interactions and the telomere membrane localization observed in mature sperm. In mammals, somatic telomere-binding proteins are apparently substituted by sperm-specific ones that may lead to a structural reorganization of telomere domains to fulfill functions important during meiosis and fertilization.  相似文献   

14.
Barceló F  Portugal J 《FEBS letters》2004,576(1-2):68-72
The antitumor drug elsamicin A contains a coumarin-related chartarin chromophore that intercalates into DNA. It differs from other related molecules in its disaccharide moiety, which bears an amino sugar. Its binding to DNA was analyzed using isothermal titration calorimetry and UV thermal denaturation, and characterized thermodynamically. For the association of elsamicin A with DNA we found DeltaG degrees = -8.6 kcal mol(-1), DeltaH = -10.4 kcal mol(-1), DeltaS = -6.1 cal mol(-1) K(-1), and Kobs = 2.8(+/- 0.2) x 10(6) M(-1) at 20 degrees C in 18 mM Na+. The contributions to the free energy of binding that lead to the DNA-elsamicin complex are compared with the binding to DNA of chartreusin, another chartarin-containing drug. The results are discussed in terms of the contributions of the disaccharide moieties into the strength of binding.  相似文献   

15.
Harper SL  Begg GE  Speicher DW 《Biochemistry》2001,40(33):9935-9943
Human erythrocyte spectrin is an antiparallel heterodimer comprised of a 280 kDa alpha subunit and a 246 kDa beta subunit which further associates into tetramers in the red cell membrane cytoskeleton. Lateral association of the flexible rodlike monomers involves a multiple-step process that is initiated by a high affinity association near the actin-binding end of the molecule (dimer nucleation site). In this study, recombinant alpha and beta proteins comprising two or four "spectrin type" motifs with and without adjacent, terminal nonhomologous domains were evaluated for their relative contributions to dimer initiation, and the thermodynamic properties of these heterodimer complexes were measured. Sedimentation equilibrium studies showed that in the absence of the heterologous subunit, individual recombinant proteins formed weak homodimers (K(d) > 0.3 mM). When 2-motif (alpha20-21 and beta1-2) and 4-motif (alpha18-21 and beta1-4) recombinants lacking the terminal nonhomologous domains were paired with the complementary protein, high affinity heterodimers were formed in sedimentation equilibrium analysis. Both the alpha20-21/beta1-2 complex and the alpha20-21EF/betaABD1-2 complex showed stoichiometric binding with similar binding affinities (K(d) approximately 10 nM) using isothermal titration calorimetry. The alpha20-21/beta1-2 complex showed an enthalpy of -10 kcal/mol, while the alpha20-21EF/betaABD1-2 complex showed an enthalpy of -13 kcal/mol. Pull-down assays using alpha spectrin GST fusion proteins showed strong associations between all heterodimer complexes in physiological buffer, but all heterodimer complexes were destabilized by the presence of Triton X-100 and other detergents. Complexes lacking the nonhomologous domains were destabilized to a greater extent than complexes that included the nonhomologous domains. The detergent effect appears to be responsible for the apparent essential role of the nonhomologous domains in prior reports. Taken together, our results indicate that the terminal nonhomologous domains do not contribute to dimer initiation nor are they required for formation of high affinity spectrin heterodimers in physiological buffers.  相似文献   

16.
17.
The Shelterin complex associates with telomeres and plays an essential role in telomere protection and telomerase regulation. In its most abundant form, the complex is composed of six core components: TRF1, TRF2, POT1, TIN2, TPP1 and RAP1. Of these subunits, three can interact directly with either single-stranded (POT1) or double-stranded (TRF1, TRF2) telomeric DNA. In this report, we have developed assays to measure the DNA binding activity of Shelterin complexes in human cell extracts. With these assays, we have characterized the composition and DNA binding specificity of two Shelterin complexes: a 6-member complex that contains all six core components and a second complex that lacks TRF1. Our results show that both of these complexes bind with high affinity (K(D) = 1.3-1.5 × 10(-9) M) and selectively to ds/ss-DNA junctions that carry both a binding site for POT1 (ss-TTAGGGTTAG) and a binding site for the SANT/Myb domain of TRF1 or TRF2 (ds-TTAGGGTTA). This DNA binding specificity suggests the preferential recruitment of these complexes to areas of the telomere where ss- and ds-DNA are in close proximity, such as the 3'-telomeric overhang, telomeric DNA bubbles and the D-loop at the base of T-loops.  相似文献   

18.
Telomeres are macromolecular nucleoprotein complexes that protect the ends of eukaryotic chromosomes from degradation, end-to-end fusion events, and from engaging the DNA damage response. However, the assembly of this essential DNA-protein complex is poorly understood. Telomere DNA consists of the repeated double-stranded sequence 5′-TTAGGG-3′ in vertebrates, followed by a single-stranded DNA overhang with the same sequence. Both double- and single-stranded regions are coated with high specificity by telomere end-binding proteins, including POT1 and TPP1, that bind as a heterodimer to single-stranded telomeric DNA. Multiple POT1-TPP1 proteins must fully coat the single-stranded telomere DNA to form a functional telomere. To better understand the mechanism of multiple binding, we mutated or deleted the two guanosine nucleotides residing between adjacent POT1-TPP1 recognition sites in single-stranded telomere DNA that are not required for multiple POT1-TPP1 binding events. Circular dichroism demonstrated that spectra from the native telomere sequence are characteristic of a G-quadruplex secondary structure, whereas the altered telomere sequences were devoid of these signatures. The altered telomere strands, however, facilitated more cooperative loading of multiple POT1-TPP1 proteins compared with the wild-type telomere sequence. Finally, we show that a 48-nucleotide DNA with a telomere sequence is more susceptible to nuclease digestion when coated with POT1-TPP1 proteins than when it is left uncoated. Together, these data suggest that POT1-TPP1 binds telomeric DNA in a coordinated manner to facilitate assembly of the nucleoprotein complexes into a state that is more accessible to enzymatic activity.  相似文献   

19.
Henzl MT  Agah S  Larson JD 《Biochemistry》2004,43(34):10906-10917
Association of the parvalbumin AB and CD-EF domains was examined in Hepes-buffered saline, pH 7.4, employing fragments from rat alpha and beta. All of the interactions require Ca(2+). In saturating Ca(2+), the alpha AB/alpha CD-EF (alpha/alpha) complex displays an association constant of (7.6 +/- 0.4) x 10(7) M(-1). Ca(2+)-binding data for a mixture of the alpha fragments are compatible with an identical two-site model, yielding an average binding constant of (8.5 +/- 0.2) x 10(5) M(-1). The beta/beta interaction is significantly weaker, exhibiting an association constant of (3.0 +/- 0.6) x 10(6) M(-1). The Ca(2+)-binding constants for beta/beta are likewise diminished, at (1.0 +/- 0.1) x 10(5) and (2.3 +/- 0.2) x 10(4) M(-1). The magnitude of the apparent DeltaDeltaG(degree)' for Ca(2+) binding by alpha/alpha and beta/beta, at 3.4 kcal/mol, approaches that measured for the intact proteins (3.6 kcal/mol) and is substantially larger than the 1.5 kcal/mol value previously measured for the isolated CD-EF domains. This result suggests that the AB domain can modulate the Ca(2+) affinities of the CD and EF sites. Interestingly, the heterologous alpha/beta complex displays a larger association constant [(6.6 +/- 0.4) x 10(6) M(-1)] than the homologous beta/beta complex and heightened Ca(2+) affinity [binding constants of (1.3 +/- 0.1) x 10(6) and (8.8 +/- 0.2) x 10(4) M(-1)]. By contrast, beta/alpha associates more weakly than alpha/alpha and exhibits sharply reduced affinity for Ca(2+). Thus, the interaction between the beta AB domain and beta CD-EF domain may act to attenuate Ca(2+) affinity in the intact protein.  相似文献   

20.
Three F1 preparations, the beef heart (MF1) and thermophilic bacterium (TF1) holoenzymes, and the alpha 3 beta 3 "core" complex of TF1 reconstituted from individually expressed alpha and beta subunits, were compared as to their kinetic and binding stoichiometric responses to covalent photoaffinity labeling with BzATP and BzADP (+/- Mg2+). Each enzyme displayed an enhanced pseudo-first order rate of photoinhibition and one-third of the sites covalent binding to a catalytic site for full inhibition, plus, but not minus Mg2+. Titration of near stoichiometric [MgBzADP]/[F1] ratios during photolysis disclosed two sequential covalent binding patterns for each enzyme; a high affinity binding corresponding to unistoichiometric covalent association concomitant with enzyme inhibition, followed by a low affinity multisite-saturating covalent association. Thus, in the absence of the structural asymmetry inducing gamma delta epsilon subunits of the holoenzyme, the sequential binding of nucleotide at putative catalytic sites on the alpha 3 beta 3 complex of any F1 appears sufficient to effect binding affinity changes. With MF1, final covalent saturation of BzADP-accessible sites was achieved with 2 mol of BzADP/mol of enzyme, but with TF1 or its alpha 3 beta 3 complex, saturation required 3 mol of BzADP/mol of enzyme. Such differential final labeling stoichiometries could arise because of the endogenous presence of 1 nucleotide already bound to one of the 3 potential catalytic sites on normally prepared MF1, whereas TF1, possessing no endogenous nucleotide, has 3 vacant BzADP-accessible sites. Kinetics measurements revealed that regardless of the incremental extent of inhibition of the TF1 holoenzyme by BzADP during photolysis, the two higher apparent Km values (approximately 1.5 x 10(-4) and approximately 10(-3) M, respectively) of the progressively inactivated incubation are unchanged relative to fully unmodified enzyme. As reported for BzATP (or BzADP) and MF1 (Ackerman, S.H., Grubmeyer, C., and Coleman, P.S. (1987) J. Biol. Chem. 262, 13765-13772), this supports the fact that the photocovalent inhibition of F1 is a one-hit one-kill phenomenon. Isoelectric focusing gels revealed that [3H]BzADP covalently modifies both TF1 and MF1 exclusively on the beta subunit, whether or not Mg2+ is present. A single 19-residue [3H]BzADP-labeled peptide was resolved from a tryptic digest of MF1, and this peptide corresponded with the one believed to contain at least a portion of the beta subunit catalytic site domain (i.e. beta Ala-338----beta Arg-356).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号