首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of d(CGCGCG) crystallized in the presence of magnesium and sodium ions alone is compared to that of the spermine form of the molecule. The very high resolution nature of these structure determinations allows the first true examination of an oligonucleotide structure in fine detail. The values of bond distances and angles are compared to those derived from small molecule crystal structures. In addition, the interactions of cations and polyamines with the Z-DNA helix are analyzed. In particular, multiple cationic charges appear to offer enhanced stabilization for the Z-DNA conformation. The location of spermine molecules along the edge of the deep groove and also spanning the entrance to the groove emphasizes the importance of polyamines for stabilizing this left-handed structure. On averaging, we obtained very similar structural parameters for the two different structures with standard deviations generally smaller than the deviations of the crystallographic model from ideal values. This indicates a high degree of accuracy of the two structures, which have been refined using different data and different refinement methods. The derived bond lengths and angles may thus be more representative of this polymeric DNA structure than those derived from mono- and dinucleotide structures at a similar accuracy.  相似文献   

2.
Several crystal structure analyses of complexes of synthetic polyamine compounds, including N(1)-(2-(2-aminoethylamino))ethyl)ethane-1,2-diamine PA(222) and N(1)-(2-(2-(2-aminoethylamino)ethylamino)ethyl)ethane-1,2-diamine PA(2222), and left-handed Z-DNA d(CGCGCG)(2) have been reported. However, until now, there have been no examples of naturally occurring polyamines bound to the minor groove of the left-handed Z-DNA of d(CGCGCG)(2) molecule. We have found that spermidine, a natural polyamine, is connected to the minor groove of left-handed Z-DNA of d(CGCGCG)(2) molecule in a crystalline complex grown at 10 degrees C. The electron density of the DNA molecule was clear enough to determine that the spermidine was connected in the minor groove of two symmetry related molecules of left-handed Z-DNA d(CGCGCG)(2). This is the first example that a spermidine molecule can form a bridge conformation between two symmetry related molecules of left-handed Z-DNA d(CGCGCG)(2) in the minor groove.  相似文献   

3.
Water structure in a protein crystal: rubredoxin at 1.2 A resolution   总被引:4,自引:0,他引:4  
The model for rubredoxin based on X-ray diffraction data has been extensively refined with a 1.2 Å resolution data set. Water oxygen atoms were deleted from the model if B exceeded 50 Å2 and occupancy was less than 0.3 eÅ?3. The final water model consists of 127 sites with B values ranging from 15 to 6?0 Å2 and occupancies from unity down to 0.3, the most tightly bound water oxygen atoms being hydrogen bonded to two or more main-chain nitrogen or oxygen atoms. The water forms extensive hydrogen bond networks bridging the crevices on the molecular surfaces and between adjacent molecules. The minimum distances of the water sites from the protein surface are distributed about two distinct maxima, the major one at 2.5 to 3 Å and a minor one at 4 to 4.5 Å. Beyond 5? to 6 Å from the protein surface, the discrete water merges into the aqueous continuum.  相似文献   

4.
We succeeded in the crystallization of d(CGCGCG)2 and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2Fo-Fc map was much clear and easily traced. It is the first time monoamine co-crystallizes with d(CGCGCG)2. However, methylamine was not found from the complex crystal of d(CGCGCG)2 and methylamine. Five Mg ions were found around d(CGCGCG)2 molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg2+. DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG)2 and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this.  相似文献   

5.
The interaction of [Ru(NH3)5Cl]2+ and [Ru(NH3)6]3+ complex ions with calf thymus DNA has been studied at various r values (r = [Mn+]/[DNA-P]). Electronic spectra of metal-DNA solutions have been recorded and compared to the spectra of metal, as well as of DNA, solutions. Melting curves have been taken for the determination of DNA melting temperature (Tm) in the presence of the above complex ions. The results showed a biphasic melting of the DNA strands for relatively high r values. The Tm for the first phase increased with increasing r values, indicating metal ion interaction with the phosphate moieties of the DNA. The appearance of a second-phase melting, in connection with electronic spectra, pH values, and conductivity measurements of metal ion solutions, is indicative of the initial complexes' transformation to [Ru(NH3)5OH]2+, which binds preferentially to double-stranded rather than single-stranded DNA, thus leading to a second melting curve at a higher temperature than the first one.  相似文献   

6.
We have solved the single crystal structure to 1.2-A resolution of the Z-DNA sequence d(CGCGCG) soaked with copper(II) chloride. This structure allows us to elucidate the structural properties of copper in a model that mimics a physiologically relevant environment. A copper(II) cation was observed to form a covalent coordinate bond to N-7 of each guanine base along the hexamer duplex. The occurrence of copper bound at each site was dependent on the exposure of the bases and the packing of the hexamers in the crystal. The copper at the highest occupied site was observed to form a regular octahedral complex, with four water ligands in the equatorial plane and a fifth water along with N-7 of the purine base at the axial positions. All other copper complexes appear to be variations of this structure. By using the octahedral complex as the prototype for copper(II) binding to guanine bases in the Z-DNA crystal, model structures were built showing that duplex B-DNA can accommodate octahedral copper(II) complexes at the guanine bases as well as copper complexes bridged at adjacent guanine residues by a reactive dioxygen species. The increased susceptibility to oxidative DNA cleavage induced by copper(II) ions in solution of the bases located 5' to one or more adjacent guanine residues can thus be explained in terms of the cation and DNA structures described by these models.  相似文献   

7.
The crystal structure of the deoxyhexamer, d(CGCICG), has been determined and refined to a resolution of 1.7A. The DNA hexamer crystallises in space group P2(1)2(1)2(1) with unit cell dimensions of a = 18.412 +/- .017 A, b = 30.485 +/- .036A, and c = 43.318 +/- .024 A. The structure has been solved by rotation and translation searches and refined to an R-factor of 0.148 using 2678 unique reflections greater than 1.0 sigma (F) between 10.0-1.7 A resolution. Although the crystal parameters are similar to several previously reported Z-DNA hexamers, this inosine containing Z-DNA differs in the relative orientation, position, and crystal packing interactions compared to d(CGCGCG) DNA. Many of these differences in the inosine form of Z-DNA can be explained by crystal packing interactions, which are responsible for distortions of the duplex at different locations. The most noteworthy features of the inosine form of Z-DNA as a result of such distortions are: (1) sugar puckers for the inosines are of C4'-exo type, (2) all phosphates have the Zl conformation, and (3) narrower minor grove and compression along the helical axis compared to d(CGCGCG) DNA. In addition, the substitution of guanosine by inosine appears to have resulted in Watson-Crick type base-pairing between inosine and cytidine with a potential bifurcated hydrogen bond between inosine N1 and cytidine N3 (2.9 A) and O2 (3.3-3.A).  相似文献   

8.
The crystal structure of a hexamer duplex d(CACGTG)(2) has been determined and refined to an R-factor of 18.3% using X-ray data up to 1.2 A resolution. The sequence crystallizes as a left-handed Z-form double helix with Watson-Crick base pairing. There is one hexamer duplex, a spermine molecule, 71 water molecules, and an unexpected diamine (Z-5, 1,3-propanediamine, C(3)H(10)N(2)) in the asymmetric unit. This is the high-resolution non-disordered structure of a Z-DNA hexamer containing two AT base pairs in the interior of a duplex with no modifications such as bromination or methylation on cytosine bases. This structure does not possess multivalent cations such as cobalt hexaammine that are known to stabilize Z-DNA. The overall duplex structure and its crystal interactions are similar to those of the pure-spermine form of the d(CGCGCG)(2) structure. The spine of hydration in the minor groove is intact except in the vicinity of the T5A8 base pair. The binding of the Z-5 molecule in the minor grove of the d(CACGTG)(2) duplex appears to have a profound effect in conferring stability to a Z-DNA conformation via electrostatic complementarity and hydrogen bonding interactions. The successive base stacking geometry in d(CACGTG)(2) is similar to the corresponding steps in d(CG)(3). These results suggest that specific polyamines such as Z-5 could serve as powerful inducers of Z-type conformation in unmodified DNA sequences with AT base pairs. This structure provides a molecular basis for stabilizing AT base pairs incorporated into an alternating d(CG) sequence.  相似文献   

9.
The DNA oligomer d(CGCGTG) crystallizes as a Z-DNA double helix containing two guanine-thymine base pair mismatches of the wobble type. The crystal diffracts to 1 A resolution and the structure has been solved and refined. At this resolution, a large amount of information is revealed about the organization of the water molecules in the lattice generally and more specifically around the wobble base pairs. By comparing this structure with the analogous high resolution structure of d(CGCGCG) we can visualize the structural changes as well as the reorganization of the solvent molecules associated with wobble base pairing. There is only a small distortion of the Z-DNA backbone resulting from introduction of the GT mismatched base pairs. The water molecules cluster around the wobble base pair taking up all of the hydrogen bonding capabilities of the bases due to wobble pairing. These bridging water molecules serve to stabilize the base-base interaction and, thus, may be generally important for base mispairing either in DNA or in RNA molecules.  相似文献   

10.
The structure of rubredoxin at 1.2 A resolution   总被引:12,自引:0,他引:12  
Structural details of the model of Clostridium pasteurianum rubredoxin are presented, based on the refined model at 1.2 Å resolution. The molecule contains no extensive regions of pleated-sheet or helical structure. Regular secondary structure consists primarily of residues 3 to 7, 11 to 13 and 48 to 52 in a small region of pleated-sheet; and residues 14 to 18, 19 to 23, 29 to 33 and 45 to 49 in 310 helical corners. Interbond angles in the helical corners average as much as 10 ° greater than normally accepted values and a number of the peptide groups deviate significantly from planarity.Rubredoxin has a pronounced asymmetry in the distribution of charged groups on its surface. This would lead to highly favored molecular orientations when the protein interacts with other charged molecules.Bond lengths in the iron-sulfur complex range from 2.24 å to 2.33 Å, and bond angles range from 104 ° to 114 °.  相似文献   

11.
The crystal structure of phosphorylase beta at 6 A resolution   总被引:6,自引:0,他引:6  
The determination of the crystal structure of phosphorylase b in the presence of IMP at 6 Å resolution is described. The structure determination is based on two heavy-atom isomorphous derivatives and their anomalous contributions. The molecular boundary is clearly distinguishable in the electron density map, except in the region of subunit-subunit contact about the crystallographic dyad axis, which is the symmetry axis of the dimer. The dimer molecule is roughly ellipsoidal in shape with dimensions 63 Å × 63 Å × 116 Å. There is a pronounced cavity on the enzyme surface but it is not yet known if this is a substrate binding site.  相似文献   

12.
The tRNAGly/glycyl-tRNA synthetase (GlyRS) system belongs to the so-called ‘class II aminoacyl-tRNA synthetase system’ in which tRNA identity elements are assured by rather few and simple determinants mostly located in the tRNA acceptor stem. Regarding evolutionary aspects, the tRNAGly/GlyRS system is a special case. There exist two different types of GlyRS, namely an archaebacterial/human type and a eubacterial type reflecting an evolutionary divergence within this system.Here we report the crystal structure of a human tRNAGly acceptor stem microhelix at 1.2 Å resolution. The local geometric parameters of the microhelix and the water network surrounding the RNA are presented. The structure complements the previously published Escherichia coli tRNAGly aminoacyl stem structure.  相似文献   

13.
14.
The octadeoxyribonucleotide d(CGCICICG) has been crystallized in space group P(6)5(22) with unit cell dimensions of a = b = 31.0 A and c = 43.7 A, and X-ray diffraction data have been collected to 1.5-A resolution. Precession photographs and the self-Patterson function indicate that 12 base pairs of Z-conformation DNA stack along the c-axis, and the double helices pack in a hexagonal array similar to that seen in other crystals of Z-DNA. The structure has been solved by both Patterson deconvolution and molecular replacement methods and refined in space group P(6)5 to an R factor of 0.225 using 2503 unique reflections greater than 3.0 sigma (F). Comparison of the molecules within the hexagonal lattice with highly refined crystal structures of other Z-DNA reveals only minor conformational differences, most notably in the pucker of the deoxyribose of the purine residues. The DNA has multiple occupancy of C:I and C:G base pairs, and C:I base pairs adopt a conformation similar to that of C:G base pairs.  相似文献   

15.
A 6Åresolution electron density map of crystals of penicillopepsin, an acid protease from Penicillium janthinellum, has been computed from multiple isomorphous replacement phases determined from two heavy metal derivatives, K2PtCl6 and UO2Cl2. The mean figure of merit of the map is 0.939. The boundaries of the molecules, of which there are four per unit cell, are readily discernible. The molecule is highly asymmetric with approximate dimensions 60Å× 40Å× 30Å. The molecule consists of two distinct lobes separated by a deep cleft, which is probably the extended substrate binding site.  相似文献   

16.
In crystals of complexes of thermine and d(CGCGCG)2 molecules grown at 4, 10, and 20 °C, the numbers of thermine molecules connected to the DNA molecule were dependent on the temperature of the crystallization. Two molecules of thermine and one Mg2+ ion were connected to DNA molecule when thermine and d(CGCGCG)2 were co-crystallized at 4 and at 20 °C. When an increased concentration of magnesium and thermine molecules were co-crystallized with d(CGCGCG)2 molecules at 10 °C, three Mg2+ ions and only one thermine molecule were bound with a d(CGCGCG)2 molecule. The number of polyamines and of Mg2+ ions connected to DNA was dependent on the atomic values of the polyamine and of the metal ion. The binding of more Mg2+ ions occurred when the atomic value of Mg2+ exceeded that of the corresponding mono- or polyamine, and when the Mg2+ ion concentration was elevated. Furthermore, this study is the first documentation of a naturally occurring polyamine bound to the minor groove of DNA in a crystal structure.  相似文献   

17.
The structure of a d(CGATCG)-daunomycin complex has been determined by single crystal X-ray diffraction techniques. Refinement, with the location of 40 solvent molecules, using data up to 1.5 A, converged with a final crystallographic residual, R = 0.25 (RW = 0.22). The tetragonal crystals are in space group P4(1)2(1)2, with cell dimensions of a = 27.98 A and c = 52.87 A. The self-complementary d(CGATCG) forms a distorted right-handed helix with a daunomycin molecule intercalated at each d(CpG) step. The daunomycin aglycon chromophore is oriented at right-angles to the long axis of the DNA base-pairs. This head-on intercalation is stabilized by direct hydrogen bonds and indirectly via solvent-mediated, hydrogen-bonding interactions between the chromophore and its intercalation site base-pairs. The cyclohexene ring and amino sugar substituent lie in the minor groove. The amino sugar N-3' forms a hydrogen bond with O-2 of the next neighbouring thymine. This electrostatic interaction helps position the sugar in a way that results in extensive van der Waals contacts between the drug and the DNA. There is no interaction between daunosamine and the DNA sugar-phosphate backbone. We present full experimental details and all relevant conformational parameters, and use the comparison with a d(CGTACG)-daunomycin complex to rationalize some neighbouring sequence effects involved in daunomycin binding.  相似文献   

18.
The complex between cobalt hexammine and decadeoxyoligomer d(CGTACGTACG) crystallizes into the space group P65 with unit cell constants a = b = 17.93A, and c = 43.41A. The molecules have the helix axis coincident with the crystal c-axis. The decamers stack on top of each other and form a quasi-continuous helix. The structure is disordered. The asymmetric unit is a dimer (pPyr-pPur)2 with each base pair 60% of the time a C-G and 40% of the time a T-A. Restrainted least-squares refinement led to an R-factor of 25.5% for 506 observed reflections above the two-sigma level. The structure was found to have one strand in the ZI-conformation and the other in the ZII-conformation. The cobalt hexammine binds to two ZII-chains of symmetrically related molecules. On one ZII chain, two ammonia molecules of the cobalt hexammine bind to the N7 nitrogen and 06 oxygen atoms of the guanine bases and a third ammonia to the phosphate anionic oxygen atom of the preceding pyrimidine base, resulting in an "external" binding mode. On the other ZII chain, one ammonia molecule of the cobalt hexammine binds only to the anionic oxygens of the phosphate group of the guanine bases, leading to an "internal" binding mode. Thus, the basis of the stabilization of Z-DNA by [Co(NH3)6]3+ is its binding to only guanine nucleotides. It is surmised that statistical disordering of deoxyoligonucleotide structures which take a Z conformation, depends on the length of the oligomer. That is to say, octamers and decamers (which cannot use an integral number of molecules for a 12 base pair repeat) form disordered structures whereas tetramers and hexamers form well ordered structures.  相似文献   

19.
Glycoside hydrolases have been classified into over 66 families on the basis of amino acid sequence. Recently a number of these families have been grouped into "clans" which share a common fold and catalytic mechanism [Henrissat, B., and Bairoch, A. (1996) Biochem. J. 316, 695-696]. Glycoside hydrolase Clan GH-C groups family 11 xylanases and family 12 cellulases, which share the same jellyroll topology, with two predominantly antiparallel beta-sheets forming a long substrate-binding cleft, and act with net retention of anomeric configuration. Here we present the three-dimensional structure of a family 12 endoglucanase, Streptomyces lividans CelB2, in complex with a 2-deoxy-2-fluorocellotrioside. Atomic resolution (1.2 A) data allow clear identification of two distinct species in the crystal. One is the glycosyl-enzyme intermediate, with the mechanism-based inhibitor covalently linked to the nucleophile Glu 120, and the other a complex with the reaction product, 2-deoxy-2-fluoro-beta-D-cellotriose. The active site architecture of the complex provides insight into the double-displacement mechanism of retaining glycoside hydrolases and also sheds light on the basis of the differences in specificity between family 12 cellulases and family 11 xylanases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号