首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Living organisms are constantly threatened by environmental DNA-damaging agents, including UV and ionizing radiation (IR). Repair of various forms of DNA damage caused by IR is normally thought to follow lesion-specific repair pathways with distinct enzymatic machinery. DNA double strand break is one of the most serious kinds of damage induced by IR, which is repaired through double strand break (DSB) repair mechanisms, including homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent studies have presented increasing evidence that various DNA repair pathways are not separated, but well interlinked. It has been suggested that non-DSB repair mechanisms, such as Nucleotide Excision Repair (NER), Mismatch Repair (MMR) and cell cycle regulation, are highly involved in DSB repairs. These findings revealed previously unrecognized roles of various non-DSB repair genes and indicated that a successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. One of our recent studies found that suppressed expression of non-DSB repair genes, such as XPA, RPA and MLH1, influenced the yield of IR induced micronuclei formation and/or chromosome aberrations, suggesting that these genes are highly involved in DSB repair and DSB-related cell cycle arrest, which reveals new roles for these gene products in the DNA repair network. In this review, we summarize current progress on the function of non-DSB repair-related proteins, especially those that participate in NER and MMR pathways, and their influence on DSB repair. In addition, we present our developing view that the DSB repair mechanisms are more complex and are regulated by not only the well known HR/NHEJ pathways, but also a systematically coordinated cellular network.Key Words: Ionizing radiation (IR), DNA damage, DSB repair, NER, MMR and cell cycle.  相似文献   

2.
The various postirradiation incubation conditions reported to uncover potentially lethal damage (PLD) induced by ionizing radiation are outlined and critically discussed. The process of damage fixation is the most characteristic determinant in distinguishing between PLD and other forms of damage (lethal or non-lethal). The results compiled indicate the induction of two forms of PLD (termed alpha- and beta-PLD). Evidence is presented that repair and fixation of alpha-PLD may underlie the variation in radiosensitivity observed through the cycle. Beta-PLD appears to be sensitive only to postirradiation treatment in anisotonic sale solutions. Results obtained at the DNA and chromosome level, under conditions allowing repair or causing fixation of PLD, are reviewed and combined together to devise a qualitative model that outlines a possible sequence of events from damage fixation at the DNA level, to damage fixation at the chromosome level and, ultimately, to cell death. It is suggested that damage uncovered at the cellular level as potentially lethal, comprises DNA dsb (single, pairs or groups) and that fixation is mediated by forces transmitted to the double helix through alteration (local or general) in chromatin conformation. Changes in chromatin conformation are caused either as a result of the cell's progression through the cycle or in response to a postirradiation treatment. The fixation process leads to the induction of chromosome aberrations. The validity of the concept of PLD in in vivo systems is shown, and the possible importance of PLD repair in radiation therapy is reviewed. The concept of PLD is compared to the concept of sublethal damage, and the possibility that similar molecular lesions underlie both types of damage is discussed.  相似文献   

3.
This review is concerned with the influence of different classes of chemical agents on cellular repair of DNA damage induced by ionizing radiation. Single-strand break rejoining is little affected by inhibitors of DNA synthesis; however, such inhibitors do lead to a persistence of double-strand breaks in the DNA, and this correlates with an enhancement of chromosome aberrations and cell killing. Experiments with antagonists of topoisomerase II suggest an intriguing role for this DNA unwinding enzyme in double-strand break repair. Interference with poly(ADP-ribose) synthesis, by means of the inhibitor 3-aminobenzamide, does not have a clear-cut effect on recovery from ionizing radiation damage. Various substances (for example, caffeine and trypsin) affect DNA repair via a modulation of the cell cycle, altering the time available to the cell for repairing potentially lethal DNA damage before such damage is 'fixed' by the process of DNA replication. Finally, disturbing cellular energy metabolism, and depressing the level of ATP, can inhibit the repair of radiation damage.  相似文献   

4.
Cells derived from individuals with ataxia-telangiectasia (AT) are more sensitive to ionizing radiation and radiomimetic drugs, as evidenced by decreased survival and increased chromosome aberrations at mitosis when compared with normal cell lines. Our previous studies showed that, despite similar initial levels of DNA double-strand breaks (DSBs), AT cells express higher initial chromosome damage than do normal cells as demonstrated by the technique of premature chromosome condensation. However, this finding accounted for only a portion of the increased sensitivity (T. K. Pandita and W. N. Hittelman, Radiat. Res. 130, 94-103, 1992). The purpose of the study reported here was to examine the contribution of DNA and chromosome repair to the radiosensitivity of AT cells. Exponentially growing AT and normal lymphoblastoid cells were fractionated into cell cycle phase-enriched populations by centrifugal elutriation, and their DNA and chromosome repair characteristics were evaluated by DNA neutral filter elution (for DNA DSBs) and by premature chromosome condensation, respectively. AT cells exhibited a reduced fast-repair component in both G1- and G2-phase cells, as observed at the level of both DNA DSBs and the chromosome; however, S-phase cells showed nearly normal DNA DSB repair. The findings that AT cells exhibit an increased level of chromosome damage and a deficiency in the fast component (but not the slow component) of repair suggest that chromatin organization might play a major role in the observed sensitivity of AT cells. When survival was plotted as a function of the residual amount of chromosome damage in G1- and G2- phase cells after 90 min of repair, the curves for normal and AT cells approached each other but did not overlap. These results suggest that, although higher initial levels of chromosome damage and reduced chromosome repair capability can explain much of the radiosensitivity of AT cells, other differences in AT cells must also contribute to their sensitivity phenotype.  相似文献   

5.
Nek1, the first mammalian ortholog of the fungal protein kinase never in mitosis A, is involved early in the DNA damage sensing/repair pathway after ionizing radiation. Here we extend this finding by showing that Nek1 localizes to nuclear foci of DNA damage in response to many different types of damage in addition to IR. Untransformed cells established from kat2J/Nek1 -/- mice fail to arrest properly at G1/S and M-phase checkpoints in response to DNA damage. G1-S-phase checkpoint control can be rescued by ectopically overexpressing wild-type Nek1. In Nek1-/- murine cells and in human cells with Nek1 expression silenced by siRNA, the checkpoint kinases Chk1 and Chk2 fail to be activated properly in response to ionizing or UV radiation. In cells without functional Nek1, DNA is not repaired properly, double-stranded DNA breaks persist long after low dose IR, and excessive numbers of chromosome breaks are observed. These data show that Nek1 is important for efficient DNA damage checkpoint control and for proper DNA damage repair.  相似文献   

6.
We found that the nucleotide excision repair protein UvrA, which is involved in DNA damage recognition, localizes to the entire chromosome both before and after damage in living Bacillus subtilis cells. We suggest that the UvrA(2)B damage recognition complex is constantly scanning the genome, searching for lesions in the DNA. We also found that DNA damage induces a dramatic reconfiguration of the chromosome such that it no longer fills the entire cell as it does during normal growth. This reconfiguration is reversible after low doses of damage and is dependent on the damage-induced SOS response. We suggest that this reconfiguration of the chromosome after damage may be either a reflection of ongoing DNA repair or an active mechanism to protect the cell's genome. Similar observations have been made in Escherichia coli, indicating that the alteration of chromosome structure after DNA damage may be a widespread phenomenon.  相似文献   

7.
We determined the effects of DNA damage caused by ultraviolet radiation on gene expression in Leptospira interrogans using DNA microarrays. These data were integrated with DNA binding in vivo of LexA1, a regulator of the DNA damage response, assessed by chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq). In response to DNA damage, Leptospira induced expression of genes involved in DNA metabolism, in mobile genetic elements and defective prophages. The DNA repair genes involved in removal of photo-damage (e.g. nucleotide excision repair uvrABC, recombinases recBCD and resolvases ruvABC) were not induced. Genes involved in various metabolic pathways were down regulated, including genes involved in cell growth, RNA metabolism and the tricarboxylic acid cycle. From ChIP-seq data, we observed 24 LexA1 binding sites located throughout chromosome 1 and one binding site in chromosome 2. Expression of many, but not all, genes near those sites was increased following DNA damage. Binding sites were found as far as 550 bp upstream from the start codon, or 1 kb into the coding sequence. Our findings indicate that there is a shift in gene expression following DNA damage that represses genes involved in cell growth and virulence, and induces genes involved in mutagenesis and recombination.  相似文献   

8.
To deal with different kinds of DNA damages, there are a number of repair pathways that must be carefully orchestrated to guarantee genomic stability. Many proteins that play a role in DNA repair are involved in multiple pathways and need to be tightly regulated to conduct the functions required for efficient repair of different DNA damage types, such as double strand breaks or DNA crosslinks caused by radiation or genotoxins. While most of the factors involved in DNA repair are conserved throughout the different kingdoms, recent results have shown that the regulation of their expression is variable between different organisms. In the following paper, we give an overview of what is currently known about regulating factors and gene expression in response to DNA damage and put this knowledge in context with the different DNA repair pathways in plants. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   

9.
Ionizing radiation damage to a mammalian genome is modeled using continuous time Markov chains. Models are given for the initial infliction of DNA double strand breaks by radiation and for the enzymatic processing of this initial damage. Damage processing pathways include DNA double strand break repair and chromosome exchanges. Linear, saturable, or inducible repair is considered, competing kinetically with pairwise interactions of the DNA double strand breaks. As endpoints, both chromosome aberrations and the inability of cells to form clones are analyzed. For the post-irradiation behavior, using the discrete time Markov chain embedded at transitions gives the ultimate distribution of damage more simply than does integrating the Kolmogorov forward equations. In a representative special case explicit expressions for the probability distribution of damage at large times are given in the form used for numerical computations and comparisons with experiments on human lymphocytes. A principle of branching ratios, that late assays can only measure appropriate ratios of repair and interaction functions, not the functions themselves, is derived and discussed.This work was supported in # DMS-9025103  相似文献   

10.
D Scott  M Fox  B W Fox 《Mutation research》1974,22(2):207-221
A pair of cultured rat lymphosarcoma cell lines (Yoshida) with a pronounced differential sensitivity to killing with sulphur mustard (SM), but with the same sensitivity to X-rays, was examined for chromosome damage and DNA repair replication after treatment with these agents. A pair of mouse lymphoma cell lines (L5178Y) with a differential sensitivity to X-rays was similarly investigated.SM-resistant Yoshida cells suffered much less chromosome damage than sensitive cells in spite of equal alkylation of DNA, RNA and protein in sensitive and resistant cells. The pair of Yoshida cell lines sustained the same amount of chromosome damage after X-irradiation. Much less chromosome damage was observed in the radiation-resistant lymphoma cell line than in the sensitive line after X-irradiation.No differences was found between the pairs of cell lines in their capacities for repair replication after SM or X-ray treatment.Thus, the drug and radiation resistance is accompanied by, and perhaps mediated through, a reduced amount of induced chromosome damage but is not quantitatively related to the capacity for DNA repair replication.Apart from small differences in modal chromosome numbers there are no obvious karyotype differences between the sulphur mustard-sensitive and -resistant Yoshida cells or between the radiation-sensitive and -resistant lymphoma cells.  相似文献   

11.
12.
Khoronenkova SV  Dianov GL 《FEBS letters》2011,585(18):2831-2835
The ARF (Alternative Reading Frame) protein is encoded in the Ink4a locus of human chromosome 9 that is frequently mutated in cancer cells. It was recently demonstrated that ARF is induced in response to DNA damage and inhibits, by direct interaction, the E3 ubiquitin ligase Mule that regulates p53 protein levels. Mule inhibition leads to p53 accumulation and activates cellular DNA damage responses. Mule has also recently been identified as a major E3 ubiquitin ligase involved in the regulation of DNA base excision repair. In this review, we will summarise the major properties of Mule and ARF and their roles in the coordination of DNA repair and DNA replication.  相似文献   

13.
Summary Future aspects of molecular radiation biology may be envisaged by looking for unsolved problems and ways to analyse them. Considering the endpoints of cellular radiation effects as cell inactivation, chromosome aberrations, mutation and transformation, the type of DNA damage in the irradiated cell and the mechanisms of DNA repair as excision repair, recombination repair and mutagenic repair are essential topics. At present, great efforts are made to identify, to clone and to sequence genes involved in the control of repair of DNA damage and to study their regulation. There are close relationships between DNA repair genes isolated from various organisms, which promises fast progress for the molecular analysis of repair processes in mammalian cells. More knowledge is necessary regarding the function of the gene products, i.e. enzymes and proteins involved in DNA repair. Effort should be made to analyse the enzymatic reactions, leading to an altered nucleotide sequence, encountered as a point mutation. Mislead mismatch repair and modulation of DNA polymerase might be possible mechanisms.Paper given at the workshop Molecular Radiation Biology. German Section of the DNA Repair Network, München-Neuherberg, 21.–23.3.90  相似文献   

14.
As part of an investigation into whether it would be possible to use UV radiation as a suitable pretreatment of the donor cells in asymmetric hybridization experiments, the effects of this treatment on sugarbeet (Beta vulgaris L.) protoplast DNA have been determined and compared with those of gamma radiation. Both nuclear and mitochondrial DNAs have been examined. The dose ranges chosen had previously been determined to be potentially applicable for fusion experiments. Pulsed field gel electrophoresis and standard agarose gel electrophoresis have been used in combination with laser scanning densitometry to gain an insight into the precise nature and degree of DNA damage resulting from irradiation. It was observed that UV radiation introduced substantial modifications to sugarbeet DNA. Double-strand breaks were detected, the number of which was found to be directly proportional to the dose applied. Such breaks indicate that UV radiation results in substantial chromosome/chromatid fragmentation in these cells. Chemical modifications to the DNA structure could be revealed by a significant reduction in DNA hybridization to specific mitochondrial and nuclear DNA probes. Following gamma irradiation at equivalent biological doses (i.e. those just sufficient to prevent colony formation) much less damage was detected. Fewer DNA fragments were produced indicating the presence of fewer double-strand breaks in the DNA structure. In comparison to UV treatments, DNA hybridization to specific probes following gamma radiation was inhibited less. For both treatments, mitochondrial DNA appeared more sensitive to damage than nuclear DNA. The possibility that DNA repair processes might account for these differences has also been investigated. Results indicate either that repair processes are not involved in the effects observed or that DNA repair occurs so fast that it was not possible to demonstrate such involvement with the experimental system used. The general relevance of such processes to asymmetric cell hybridization is discussed.  相似文献   

15.
A new approach to cancer and new methods in examining rare human chromosome breakage syndromes have brought to light complex interactions between different pathways involved in damage response, cell cycle checkpoint control and DNA repair. The genes affected in these different syndromes are involved in networks of processes that respond to DNA damage and prevent chromosomal aberrations during the cell cycle. The genes involved include the ATM, ATR, FA-associated genes, NBS1 and the cancer susceptibility genes BRCA1 and BRCA2. Chromosomal instability is a common feature of many human cancers and most of the instability syndromes, characterized by sensitivity to different types of DNA damage, also show increased cancer susceptibility. Better understanding of these syndromes and their links with familial cancer provide new insight into associations between defects in DNA damage response, cell cycle control, DNA repair and cancer. Understanding the damage response repair networks that these studies are revealing will have important implications for the development of cancer management and treatment.  相似文献   

16.
In Saccharomyces cerevisiae, Rad50 is reported to participate in the repair of double-stranded DNA breaks, and most rad50 mutants are unable to repair gamma-ray-induced DNA damage. In this study, we examined whether human RAD50 is involved in the repair of DNA damage induced by gamma radiation, radiomimetic alkylating agents, or UVB radiation in cultured human cells. Because homozygous null RAD50 mutant cells could not be isolated, human 293 embryonic kidney cells and A431 epithelial tumor cells were transfected with antisense RAD50 cDNA to obtain viable cell lines which expressed reduced RAD50. Selected individual clones were subjected to PCR-Southern and Western blot analyses to confirm the integrity of the antisense RAD50 construct and the reduced RAD50 expression levels. The cells engineered to express reduced RAD50 levels showed significantly increased sensitivity to gamma radiation, mitomycin C and methylmethane sulfonate compared with control cells that were transfected with the vector alone. However, there were no differences in viability of cells with reduced RAD50 levels and control cells treated with UVB radiation. These results indicate that human RAD50 is involved in the repair of DNA damage induced by gamma radiation and alkylating agents in mammalian cells and suggest the possible application of antisense RAD50 cDNA transfection as a radiation sensitizer in radiation oncology.  相似文献   

17.
The genomic frequency of chromosomal aberrations obtained by chromosome painting is usually extrapolated from the observed frequency of aberrations by correcting for the DNA content of the labelled chromosomes. This extrapolation is based upon the assumption of random distribution of breakpoints from which aberrations are generated. However, the validity of this assumption has been widely questioned. While extensive investigations have been performed with ionizing radiation as chromosome breaking agent, little efforts have been done with chemical clastogens. In order to investigate interchromosomal differences in chemically-induced chromosome damage, we have used multicolour chromosome painting to analyse bleomycin-induced aberrations involving chromosomes 1 and 4, two chromosomes that differ in gene density. In addition, we have measured the effect of cytosine arabinoside upon the repair of bleomycin-induced DNA damage in chromosomes 1 and 4. Our results show that these chromosomes are equally sensitive to the clastogenic effect of bleomycin with a similar linear dose-effect relationship. However, the high gene density chromosome 1 appeared to be more sensitive to repair inhibition by Ara-C than chromosome 4. This enhanced sensitivity to repair inhibition in chromosome 1 could be mediated by preferential repair of open chromatin and actively transcribed regions.  相似文献   

18.
19.
20.
HeLa S3 cells growing in suspension have been used to investigate possible mechanisms underlying the inhibitory action of hyperthermia (44 degrees C) on the repair of DNA strand breaks as caused by a 6-Gy X-irradiation treatment. The role of hyperthermic inactivation of DNA polymerase alpha was investigated using the specific DNA polymerase alpha inhibitor, aphidicolin. It was found that both heat and aphidicolin (greater than or equal to 2 micrograms ml-1) could decrease DNA repair rates in a dose-dependent way. When the applications of heat and aphidicolin were combined, each at nonmaximal doses, no full additivity in effects was observed on DNA repair rates. When the heat and radiation treatment were separated in time by postheat incubation at 37 degrees C, restoration to normal repair kinetics was observed within 8 h after hyperthermia. When heat was combined with aphidicolin addition, restoration of the aphidicolin effect to control level was also observed about 8 h after hyperthermia. It is suggested that although DNA polymerase alpha seems to be involved in the repair of X-ray-induced DNA damage, and although this enzyme is partially inactivated by heat, other forms of heat damage have to be taken into account to explain the observed repair inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号