首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that previously demonstrated gender differences in ACh-induced vascular relaxation could involve diverse Na(+)-K(+)-ATPase functions. We determined Na(+)-K(+)-ATPase by measuring arterial ouabain-sensitive 86Rb uptake in response to ACh. We found a significant increase of Na+ pump activity only in aortic rings from female rats (control 206 +/- 11 vs. 367 +/- 29 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.01). Ovariectomy eliminated sex differences in Na(+)-K(+)-ATPase function, and chronic in vivo hormone replacement with 17beta-estradiol restored the ACh effect on Na(+)-K(+)-ATPase. Because ACh acts by enhancing production of NO, we examined whether the NO donor sodium nitroprusside (SNP) mimics the action of ACh on Na(+)-K(+)-ATPase activity. SNP increased ouabain-sensitive 86Rb uptake in denuded female arteries (control 123 +/- 7 vs. 197 +/- 12 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.05). Methylene blue (an inhibitor of guanylate cyclase) and KT-5823 (a cGMP-dependent kinase inhibitor) blocked the stimulatory action of SNP. Exposure of female thoracic aorta to the Na+/K+ pump inhibitor ouabain significantly decreased SNP-induced and ACh-mediated relaxation of aortic rings. At the molecular level, Western blot analysis of arterial tissue revealed significant gender differences in the relative abundance of catalytic isoforms of Na(+)-K(+)-ATPase. Female-derived aortas exhibited a greater proportion of alpha2-isoform (44%) compared with male-derived aortas. Furthermore, estradiol upregulated the expression of alpha2 mRNA in male arterial explants. Our results demonstrate that enhancement of ACh-induced relaxation observed in female rats may be in part explained by 1) NO-dependent increased Na(+)-K(+)-ATPase activity in female vascular tissue and 2) greater abundance of Na(+)-K(+)-ATPase alpha2-isoform in females.  相似文献   

2.
The results of histochemical and immunocytochemical studies have been used elsewhere to support the hypothesis that Na+/K(+)-ATPase expression is initiated or increases dramatically in preimplantation mouse conceptuses just before they begin to cavitate. Moreover, localization of the enzyme in the inner membrane of the mural trophoblast is thought to be involved directly in formation and maintenance of the blastocyst cavity. Presumably, Na+/K(+)-ATPase extrudes the cation, Na+, and therefore water into the cavity. The cation transporting activity of the enzyme can be determined by measuring ouabain-sensitive Rb+ uptake by cells. Therefore, we measured Rb+ uptake in mouse eggs and preimplantation conceptuses at various stages of development. 86Rb+ uptake by conceptuses increased linearly with time for at least 60 min in medium containing 0.7 mM total Rb+ plus K+ in the absence or presence of 1.0 mM ouabain, and ouabain inhibited more than 70% of 86Rb+ uptake. The ouabain concentration at 1/2 of maximum inhibition of the ouabain-sensitive component of 86Rb+ uptake was about 10-20 microM in eggs and conceptuses at all stages of preimplantation development. Moreover, ouabain-sensitive Rb+ uptake had a twofold higher Vmax value in blastocysts than in eggs or conceptuses at earlier stages of development (i.e., approximately 173 vs 70-100 fmole.conceptus-1.min-1), although the total cell surface area also was probably about two times greater in blastocysts than in eggs or other conceptuses. Ouabain-sensitive Rb+ transport in eggs and conceptuses may have occurred via a single ouabain-sensitive Rb+ transporter with a Hill coefficient of 1.5-1.8 (Hill plots). When it was assumed that the Hill coefficient had a value of 2.0, however, eggs and conceptuses appeared to contain at least two forms of Na+/K(+)-ATPase activity. These studies are the first to show that the cation transporting activity of Na+/K(+)-ATPase can be measured quantitatively in mammalian eggs and preimplantation conceptuses. Inclusion of this assay in experiments designed to determine how Na+/K(+)-ATPase activity is controlled in oocytes and conceptuses should yield further insight into the role of this enzyme in oogenesis and preimplantation development.  相似文献   

3.
Cardiac glycosides inhibit the sodium pump. However, some studies suggest that nanomolar ouabain concentrations can stimulate the activity of the sodium pump. In this study, using the Na(+)/K(+)-ATPase of human erythrocytes, we compared the effect of digoxin, ouabain and an ouabain like-factor (OLF), on (86)Rb uptake. Ouabain concentrations below 10(-9) M significantly stimulate Rb(+) uptake, and the maximal increase above base-line values is 18 +/- 5% at 10(-10) M ouabain. No stimulation is observed in the same conditions by digoxin. OLF behaved like ouabain, producing an activation of Rb(+) flux at concentrations lower than 10(-9) M ouabain equivalents (14 +/- 3% at 10(-10) M). Western blot analysis revealed the presence of both alpha(1) and alpha(3) pump isoforms in human erythrocytes. Our data confirm the analogies between OLF and ouabain and suggest that Na(+)/K(+)-ATPase activation may be related to the alpha(3) isoform. In addition, we investigated whether ouabain at different concentrations was effective in altering the intracellular calcium concentration of erythrocytes. We found that ouabain at concentration lower than 10(-9) M did not affect this homeostasis.  相似文献   

4.
Two molecular forms of the (Na+,K+)-ATPase catalytic subunit have been identified in rat adipocyte plasma membranes using immunological techniques. The similarity between these two forms and those in brain (Sweadner, K. J. (1979) J. Biol. Chem. 254, 6060-6067) led us to use the same nomenclature: alpha and alpha(+). The K0.5 values of each form for ouabain (determined by inhibition of phosphorylation of the enzyme from [gamma-32P]ATP) were 3 X 10(-7)M for alpha(+) and 1 X 10(-5)M for alpha. These numbers correlate well with the K0.5 values for the two ouabain-inhibitable components of 86Rb+/K+ pumping in intact cells (1 X 10(-7) M and 4 X 10(-5)M). Quantitation of the Na+ pumps in plasma membranes demonstrated a total of 11.5 +/- 0.2 pmol/mg of membrane protein, of which 8.5 +/- 0.3 pmol/mg, or 75%, was alpha(+). Insulin stimulation of 86Rb+/K+ uptake in rat adipocytes was abolished by ouabain at a concentration sufficient to inhibit only alpha(+)(2-5 X 10(-6)M). Immunological techniques and ouabain inhibition of catalytic labeling of the enzyme from [gamma-32P]ATP demonstrated that alpha(+) was present in skeletal muscle membranes as well as in adipocyte membranes, but was absent from liver membranes. Since insulin stimulates increased Na+ pump activity in adipose and muscle tissue but not in liver, there is a correlation between hormonal regulation of (Na+,K+)-ATPase and the presence of alpha(+). We propose that alpha(+) is the hormonally-sensitive version of the enzyme.  相似文献   

5.
In circulation, platelets may come into contact with both exogenous (cardiac glycoside treatment) and endogenously produced inhibitors of Na+/K(+)-ATPase. We examined whether blocking of platelet Na+/K(+)-ATPase by ouabain results in generation of procoagulant activity. It was shown that an in vitro treatment of platelets with ouabain (20-200 microM for 20 to 60 min) is associated with an intracellular accumulation of sodium ([Na+](i)), generation of a weak calcium signal, and expression of procoagulant activity. The ouabain-induced procoagulant response was dose- and time-related, less pronounced than that evoked by collagen and similar to that produced by gramicidin, not affected by EDTA or aspirin, and strongly reduced in the absence of extracellular Na+ or by hyperosmolality. Flow cytometry studies revealed that ouabain treatment results in a unimodal left shift in the forward and side scatter of the entire platelet population indicating morphological changes of the plasma membrane. The shift was dose related, weaker than that evoked by collagen and similar to that produced by gramicidin. Ouabain-treated platelets express phosphatidylserine (PS). The ouabain-evoked PS expression was dose- and time-dependent, weaker than that produced by collagen and similar to that evoked by gramicidin. Electronic cell sizing measurements showed a dose-dependent increase in mean platelet volume upon treatment with ouabain. Hypoosmotically-evoked platelet swelling resulted in the appearance of procoagulant activity. Thromboelastography measurements indicate that, in whole blood, nanomolar (50-1000 nM, 15 min) concentrations of ouabain significantly accelerate the rate of clot formation initiated by contact and high extracellular concentration of calcium. We conclude that inefficiently operating platelet Na+/K(+)-ATPase results in a rise in [Na+](i). An increase in [Na+](i) and the swelling associated with it may produce PS exposure and a rise in membrane curvature leading to the generation of a procoagulant activity.  相似文献   

6.
Previous studies have indicated that 20-hydroxyeicosatetraenoic acid (20-HETE) inhibits Na+ transport in the medullary thick ascending loop of Henle (mTALH), but the mechanisms involved remain uncertain. The present study compared the effects of 20-HETE with those of ouabain and furosemide on intracellular Na+ concentration ([Na+]i), Na+ -K+ -ATPase activity, and 86Rb+ uptake, an index of Na+ transport, in mTALH isolated from rats. Ouabain (2 mM) increased, whereas furosemide (100 microM) decreased, [Na+]i in the mTALH of rats. Ouabain and furosemide inhibited 86Rb+ uptake by 91 and 30%, respectively. 20-HETE (1 microM) had a similar effect as ouabain and increased [Na+]i from 19 +/- 1 to 30 +/- 1 mM. 20-HETE reduced Na+ -K+ -ATPase activity by 30% and 86Rb+ uptake by 37%, but it had no effect on 86Rb+ uptake or [Na+]i in the mTALH of rats pretreated with ouabain. 20-HETE inhibited 86Rb+ uptake by 12% and increased [Na+]i by 19 mM in mTALH pretreated with furosemide. These findings indicate that 20-HETE secondarily inhibits Na+ transport in the mTALH of the rat, at least, in part by inhibiting the Na+ -K+ -ATPase activity and raising [Na+]i.  相似文献   

7.
Potassium influx has been investigated in XTH-2 cells, a line derived from tadpole heart endothelia. In this line, the density at which the cultures become confluent is clearly separated from the density at which growth arrest takes place. Density-related changes in K+ influx were monitored by determining the uptake of 86Rb into well adhering cells kept in culture medium. The main observations were 1) 86Rb uptake is highest in single cells, and on confluency it reaches a low level, which is kept constant at higher cell density regardless of whether the cultures are stationary or still in logarithmic growth phase; 2) the relative amount of 86Rb taken up via the Na+ -K+ -2Cl- cotransport pathway and via the Na+/K+ pump changes from low cell density to confluent cultures; 86Rb uptake of single cells is nearly insensitive to ouabain, a maximum of ouabain sensitivity is reached around confluency, whereas piretanide-sensitive 86Rb uptake is highest in single cells and seems to reach a minimum at the onset of confluency; 3) the variations in Na+/K+ pumping rate reflect neither differences in the amount of enzyme present nor changes in enzyme repartition between apical and basolateral plasma membranes; they seem to result from either "masking" or "unmasking" of the enzyme; 4) no alterations in K+ uptake occur that would be characteristic of the "stationary growth phase." The only changes that seem to be related to arrest of proliferation are concerned with the Na+/K+-ATPase, which achieves an extraordinary susceptibility to stimulation by monensin and exhibits an increase in PNPPase activity.  相似文献   

8.
Inactivation of Na+/K(+)-ATPase activity by the MgPO4 complex analogue Co(NH3)4PO4 leads, in everted red blood cell vesicles, to the parallel inactivation of 22Na+/K+ flux and 86Rb/Rb+ exchange, but leaves the 22Na+/Na(+)-exchange activity and the uncoupled ATP-supported 22Na+ transport unaffected. Furthermore, inactivation of purified Na+/K(+)-ATPase by Co(NH3)4PO4 leads to a parallel decrease of the capacity of the [3H]ouabain receptor site, when binding was studied by the Mg2+/Pi-supported pathway (ouabain-enzyme complex II) but the capacity of the ouabain receptor site was unaltered, when the Na+/Mg2+/ATP-supported pathway (ouabain-enzyme complex I) was used. No change in the dissociation constants of either ouabain receptor complex was observed following inactivation of Na+/K(+)-ATPase. When eosin was used as a marker for the high-affinity ATP-binding site of the E1 conformation, formation of stable E'2.Co(NH3)4PO4 complex led to a shift in the high-affinity ATP-binding site towards the sodium form. This led to an increase in the dissociation constant of the enzyme complex with K+, from 1.4 mM with the unmodified enzyme to 280 mM with the Co(NH3)4PO4-inactivated enzyme. It was concluded, that the effects of Co(NH3)4PO4 on the partial activities of the sodium pump are difficult to reconcile with an alpha, beta-protomeric enzyme working according the Albers-Post scheme. The data are consistent with an alpha 2, beta 2 diprotomeric enzyme of interacting catalytic subunits working with a modified version of the Albers-Post model.  相似文献   

9.
Isolated muscle cells from adult rat heart have been used to study the relationship between myocardial glucose transport and the activity of the Na+/K+ pump. 86Rb+-uptake by cardiac cells was found to be linear up to 2 min with a steady-state reached by 40-60 min, and was used to monitor the activity of the Na+/K+ pump. Ouabain (10(-3) mol/l) inhibited the steady-state uptake of 86Rb+ by more than 90%. Both, the ouabain-sensitive and ouabain-insensitive 86Rb+-uptake by cardiac cells were found to be unaffected by insulin treatment under conditions where a significant stimulation of 3-O-methylglucose transport occurred. 86Rb+-uptake was markedly reduced by the presence of calcium and/or magnesium, but remained unresponsive towards insulin treatment. Inhibition of the Na+/K+ pump activity by ouabain and a concomitant shift in the intracellular Na+ :K+ ratio did not affect basal or insulin stimulated rates of 3-O-methylglucose transport in cardiac myocytes. The data argue against a functional relationship between the myocardial Na+/K+ pump and the glucose transport system.  相似文献   

10.
Insulin stimulated the uptake of 86Rb+ (a K+ analog) in rat adipocytes and increased the steady state concentration of intracellular potassium. Half-maximal stimulation occurred at an insulin concentration of 200 pM. Both basal- and insulin-stimulated 86Rb+ transport rates depended on the concentration of external K+, external Na+, and were 90% inhibited by 10(-3) M ouabain and 10(-3) M KCN, indicating that the hormone was activating the (Na+,K+)-ATPase. Insulin had no effect on the entry of 22Na+ or exit of 86Rb+. Kinetic analysis demonstrated that insulin acted by increasing the maximum velocity, Vmax, of 86Rb+ entry. Inhibition of the rate of Rb+ uptake by ouabain was best described by a biphasic inhibition curve. Scatchard analysis of ouabain binding to intact cells indicated binding sites with multiple affinities. Only the rubidium transport sites which exhibited a high affinity for ouabain were stimulated by insulin. Stimulation required insulin binding to an intact cell surface receptor, as it was reversible by trypsinization. We conclude that the uptake of 86Rb+ by the (Na+,K+)-ATPase is an insulin-sensitive membrane transport process in the fat cell.  相似文献   

11.
Ouabain, a sodium pump (Na+/ K+-ATPase) inhibitor, has been shown to act as a hormone and is possibly involved in the pathogenesis of hypertension. The mechanism by which ouabain may act was investigated using primary cultures of human umbilical artery endothelial cells (HUAECs), which are known to express and release the vasoconstrictive hormone endothelin (ET-1). Five minutes after application, low concentrations of ouabain induced Ca2+ oscillations and stimulated ET-1 release from endothelial cells into the medium. To investigate whether the observed effects were due to inhibition of the sodium pump, the effects of ouabain on the uptake of 86Rb+ by HUAECs were examined. Unexpectedly, ouabain concentrations below 10 nm stimulated 86Rb+ uptake by 15-20%, and in some experiments by 50%, results that are consistent with a stimulation of the pump. Within the concentration range 1-10 nm, ouabain induced a 2.5-fold stimulation (phosphorylation) of mitogen-activated protein kinase (MAP kinase). After incubation of HUAECs with ouabain for 12 h, the glycoside stimulated cell growth by 49 +/- 4%, as measured by cell number, with a maximum response at 5 nm. At similar concentrations, ouabain also increased ET-1 mRNA abundance by 19.5 +/- 3.1%. The results indicate that, by influencing ET-1 expression and release, ouabain may contribute to the regulation of vascular tone. The data also confirm that it is not a global inhibition of the sodium pump that is involved in the mechanism of action of this cardiac glycoside.  相似文献   

12.
13.
Regulation of Na+ transport in brown adipose tissue.   总被引:2,自引:0,他引:2       下载免费PDF全文
In order to test the hypothesis that Na+, K+-ATPase (Na+,K+-dependent ATPase) is involved in the noradrenaline-mediated stimulation of respiration in brown adipose tissue, the effects of noradrenaline on Na+,K+-ATPase in isolated brown-fat-cell membrane vesicles, and on 22Na+ and K+ (86Rb+) fluxes across the membranes of intact isolated cells, were measured. The ouabain-sensitive fraction of the K+-dependent ATPase activity in the isolated membrane-vesicle preparation was small and was not affected by the presence of noradrenaline in the incubation media. The uptake of 86Rb+ into intact hormone-sensitive cells was inhibited by 80% by ouabain, but it was insensitive to the presence of noradrenaline. 22Na+ uptake and efflux measured in the intact cells were 8 times more rapid than the 86Rb+ fluxes and were unaffected by ouabain. This indicated the presence of a separate, more active, transport system for Na+ than the Na+,K+-ATPase. This is likely to be a Na+/Na+ exchange activity under normal aerobic conditions. However, under anaerobic conditions, or conditions simulating anaerobiosis (2 mM-NaCN), the unidirectional uptake of Na+ increased dramatically, while efflux was unaltered.  相似文献   

14.
1. Ouabain-sensitive 86Rb+ uptake by tissue preparations has been used as an estimate of Na+ pump activity. This uptake, however, may be a measure of the Na+ influx rate, rather than capacity of the Na+ pump, since intracellular Na+ concentration is a determinant of the active Na+/Rb+ exchange reaction under certain conditions. This aspect was examined by studying the effect of altered Na+ influx rate on ouabain-sensitive 86Rb+ uptake in atrial preparations of guinea pig hearts. 2. Electrical stimulation markedly enhanced ouabain-sensitive 86Rb+ uptake without affecting nonspecific, ouabain-insensitive uptake. Paired-pulse stimulation studies indicate that the stimulation-induced enhancement of 86Rb+ uptake is due to membrane depolarizations, and hence related to the rate of Na+ influx. 3. Alterations in the extracellular Ca2+ concentration failed to affect the 86Rb+ uptake indicating that the force of contraction does not influence 86Rb+ uptake. 4. Reduced Na+ influx by low extracellular Na+ concentration decreased 86Rb+ uptake, and an increased Na+ influx by a Na+-specific ionophore, monensin, enhanced 86Rb+ uptake in quiescent atria. 5. Grayanotoxins, agents that increase transmembrane Na+ influx, and high concentrations of monensin appear to have inhibitory effects on ouabain-sensitive 86Rb+ uptake in electrically stimulated and in quiescent atria. 6. Electrical stimulation or monensin enhanced ouabain binding to (Na+ + K+)-ATPase and also increased the potency of ouabain to inhibit 86Rb+ uptake indicating that the intracellular Na+ available to the Na+ pump is increased under these conditions. 7. The ouabain-sensitive 86Rb+ uptake in electrically stimulated atria was less sensitive to alterations in the extracellular Na+ concentration, temperature and monensin than that in quiescent atria. 8. These results indicate that the rate of Na+ influx is the primary determinant of ouabain-sensitive 86Rb+ uptake in isolated atria. Electrical stimulation most effectively increases the Na+ available to the Na+ pump system. The ouabain-sensitive 86Rb+ uptake by atrial preparations under electrical stimulation at a relatively high frequency seems to represent the maximal capacity of the Na+ pump in this tissue.  相似文献   

15.
Na(+),K(+)-ATPase is a heterodimer consisting of catalytic α1-α4 and regulatory β1-β3 subunits. Recently, we reported that transfection with ouabain-resistant α1R-Na(+),K(+)-ATPase rescues renal epithelial C7-MDCK cells exclusively expressing the ouabain-sensitive α1S-isoform from the cytotoxic action of ouabain. To explore the role of α2 subunit in ion transport and cytotoxic action of ouabain, we compared the effect of ouabain on K(+) ((86)Rb) influx and the survival of ouabain-treated C7-MDCK cells stably transfected with α1R- and α2R-Na(+),K(+)-ATPase. α2R mRNA in transfected cells was ~8-fold more abundant than α1R mRNA, whereas immunoreactive α2R protein content was 5-fold lower than endogenous α1S protein. A concentration of 10?μmol/L ouabain led to complete inhibition of (86)Rb influx both in mock- and α2R-transfected cells, whereas maximal inhibition of (86)Rb influx in α1R-transfectd cells was observed at 1000?μmol/L ouabain. In contrast to the massive death of mock- and α2R-transfected cells exposed to 3?μmol/L ouabain , α1R-cells survived after 24?h incubation with 1000?μmol/L ouabain. Thus, our results show that unlike α1R, the presence of α2R-Na(+),K(+)-ATPase subunit mRNA and immunoreactive protein does not contribute to Na(+)/K(+) pump activity, and does not rescue C7-MDCK cells from the cytotoxic action of ouabain. Our results also suggest that the lack of impact of transfected α2-Na(+),K(+)-ATPase on Na(+)/K(+) pump activity and cell survival can be attributed to the low efficiency of its translation and (or) delivery to the plasma membrane of renal epithelial cells.  相似文献   

16.
To probe the mechanism by which intracellular ATP, Na+, and Cl- influence the activity of the NaK2Cl cotransporter, we measured bumetanide-sensitive (BS) 86Rb fluxes in the osteosarcoma cell line UMR- 106-01. Under physiological gradients of Na+, K+, and Cl-, depleting cellular ATP by incubation with deoxyglucose and antimycin A (DOG/AA) for 20 min at 37 degrees C reduced BS 86Rb uptake from 6 to 1 nmol/mg protein per min. Similar incubation with 0.5 mM ouabain to inhibit the Na+ pump had no effect on the uptake, excluding the possibility that DOG/AA inhibited the uptake by modifying the cellular Na+ and K+ gradients. Loading the cells with Na+ and depleting them of K+ by a 2-3- h incubation with ouabain or DOG/AA increased the rate of BS 86Rb uptake to approximately 12 nmol/mg protein per min. The unidirectional BS 86Rb influx into control cells was approximately 10 times faster than the unidirectional BS 86Rb efflux. On the other hand, at steady state the unidirectional BS 86Rb influx and efflux in ouabain-treated cells were similar, suggesting that most of the BS 86Rb uptake into the ouabain-treated cells is due to K+/K+ exchange. The entire BS 86Rb uptake into ouabain-treated cells was insensitive to depletion of cellular ATP. However, the influx could be converted to ATP-sensitive influx by reducing cellular Cl- and/or Na+ in ouabain-treated cells to impose conditions for net uptake of the ions. The BS 86Rb uptake in ouabain-treated cells required the presence of Na+, K+, and Cl- in the extracellular medium. Thus, loading the cells with Na+ induced rapid 86Rb (K+) influx and efflux which, unlike net uptake, were insensitive to cellular ATP. Therefore, we suggest that ATP regulates a step in the turnover cycle of the cotransporter that is required for net but not K+/K+ exchange fluxes. Depleting control cells of Cl- increased BS 86Rb uptake from medium-containing physiological Na+ and K+ concentrations from 6 to approximately 15 nmol/mg protein per min. The uptake was blocked by depletion of cellular ATP with DOG/AA and required the presence of all three ions in the external medium. Thus, intracellular Cl- appears to influence net uptake by the cotransporter. Depletion of intracellular Na+ was as effective as depletion of Cl- in stimulating BS 86Rb uptake.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Isolated hepatocytes from the elasmobranch Raja erinacea were examined for their regulatory responses to a solute load following electrogenic uptake of L-alanine. The transmembrane potential (Vm) was measured with glass microelectrodes filled with 0.5 M KCl (75 to 208 M omega in elasmobranch Ringer's solution) and averaged -61 +/- 16 mV (S.D.; n = 68). L-Alanine decreased (depolarized) Vm by 7 +/- 3 and 18 +/- 2 mV at concentrations of 1 and 10 mM, respectively. Vm did not repolarize to control values during the 5-10 min impalements, unless the amino acid was washed away from the hepatocytes. The depolarizing effect of L-alanine was dependent on external Na+, and was specific for the L-isomer of alanine, as D- and beta-alanine had no effect. Hepatocyte Vm also depolarized on addition of KCN or ouabain, or when external K+ was increased. Rates of 86Rb+ uptake and efflux were measured to assess the effects of L-alanine on Na+/K+-ATPase activity and K+ permeability, respectively. Greater than 80% of the 86Rb+ uptake was inhibited by 2 mM ouabain, or by substitution of choline+ for Na+ in the incubation media. L-Alanine (10 mM) increased 86Rb+ uptake by 18-49%, consistent with an increase in Na+/K+ pump activity, but had no effect on rubidium efflux. L-Alanine, at concentrations up to 20 mM, also had no measurable effect on cell volume as determined by 3H2O and [14C]inulin distribution. These results indicate that Na+-coupled uptake of L-alanine by skate hepatocytes is rheogenic, as previously observed in other cell systems. However, in contrast to mammalian hepatocytes, Vm does not repolarize for at least 10 min after the administration of L-alanine, and changes in cell volume and potassium permeability are also not observed.  相似文献   

18.
86Rb+ was used as an isotopic tracer for the measurement of K+-uptake into quiescent murine bone marrow-derived macrophages. 86Rb+ uptake was inhibited by ouabain indicating a Na+K+-ATPase is being measured. In support of this finding, increased sensitivity to ouabain inhibition was seen when the K+ content of the medium was reduced. A purified colony stimulating factor (CSF-1) was shown to stimulate the ouabain-sensitive 86Rb+ uptake in a dose-dependent manner. Such colony stimulating factor stimulation of 86Rb+ (K+) influx was rapid, with a maximal effect seen 10 minutes after growth factor addition followed by a gradual decrease. Thus increased Na+K+-ATPase activity was an early response of macrophages to the colony stimulating factor.  相似文献   

19.
In order to characterize the transport systems mediating K+ uptake into oocytes, flux studies employing 86Rb were performed on Xenopus oocytes stripped of follicular cells by pretreatment with Ca2(+)-Mg2(+)-free Barth's medium. Total Rb+ uptake consisted of an ouabain-sensitive and an ouabain-insensitive flux. In the presence of 100 mmol/l NaCl and 0.1 mmol/l ouabain the ouabain-insensitive flux amounted to 754.7 +/- 59.9 pmol/oocyte per h (n = 30 cells, i.e., 10 cells each from three different animals). In the absence of Na+ (Na+ substituted by N-methylglucamine) or when Cl- was replaced by NO3- the ouabain-insensitive flux was reduced to 84.4 +/- 42.9 and 79.2 +/- 12.1 pmol/oocyte per h, respectively (n = 50 cells). Furthermore, this Na(+)- and Cl(-)-dependent flux was completely inhibited by 10(-4) mol/l bumetanide, a specific inhibitor of the Na(+)-K(+)-2Cl- cotransport system. These results suggest that K+ uptake via a bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport system represents a major K+ pathway in oocytes.  相似文献   

20.
The cation-transporting activity and Na,K-ATPase activity of CV-1 cell recipients of the mouse ouabain resistance gene (ouaR6, or OR6 cells; see Levenson, R., Racaniello, V., Albritton, L., and Housman, D. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 1489-1493) have been further characterized. OR6 cells grown in strophanthidin (a cardiac aglycon which may be removed rapidly from the Na,K-ATPase) possess both ouabain-sensitive and -insensitive 86Rb+ uptake activities. The ouabain-sensitive 86Rb+ uptake activity of these cells (OR6-S cells) exhibits the same Ki for ouabain as that of the CV-1 parent cells (Ki(app) = 3 x 10(-7) M ouabain), but accounts for only approximately 30% of total 86Rb+ uptake into Na+-loaded OR6-S cells, compared to 80% for CV-1 cells. Most of the ouabain-resistant 86Rb+ uptake in OR6-S cells is dependent on internal Na+ and is insensitive to furosemide, suggesting that it is due to an ouabain-resistant Na,K pump. In OR6-S cell lysates, 50% of Na+-dependent ATPase activity is insensitive to 1 mM ouabain, compared to less than 5% in CV-1 cell lysates. In addition, purified plasma membranes from OR6-S cells contain a 100-kDa protein which is transiently phosphorylated by ATP in an Na+-dependent, K+-sensitive manner, like the alpha subunit of the CV-1 Na,K-ATPase and the canine renal Na,K-ATPase, but which is unaffected by preincubation in 1 mM ouabain. All of these data suggest that OR6-S cells possess a ouabain-insensitive Na,K pump with characteristics similar to the ouabain-sensitive pump of CV-1 parent cells. Since the mouse ouabain resistance gene does not encode either subunit of the Na,K-ATPase, these results suggest that the ouabain resistance gene product may modify the ouabain sensitivity of the endogenous CV-1 Na,K pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号