首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Short-term incubation of adult rat hepatocytes with epidermal growth factor (EGF) caused tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and IRS-2 when the cells had been submitted to primary culture from 1-18 h. Tyrosine-phosphorylated IRS-1 and IRS-2 bound to the regulatory subunit (p85) of phosphatidylinositol (PtdIns) 3-kinase, thereby activating the enzymic activity. Tyrosine phosphorylation of the IRSs and activation of PtdIns 3-kinase in 3 h cultured hepatocytes both proceeded similarly to the same actions of insulin; the activation was rapid and transient, with peak values at 15-30 s and with similar EC(50)s in the nM range in both cases. A possible involvement of insulin receptors in these insulin-like actions of EGF was excluded by the following three lines of evidence. Insulin caused tyrosine phosphorylation of the insulin receptor beta-subunit but EGF did not. In contrast, the EGF receptor was phosphorylated by EGF, but the insulin receptor was not. The actions of EGF, but not those of insulin, were inhibited by AG1478, a selective inhibitor of EGF receptor tyrosine kinase. Cultured hepatocytes exposed to insulin or insulin-like growth factor-I (IGF-I) for a short period responded to the subsequent addition of EGF, whereas EGF-treated cells responded to insulin. The cells, however, displayed receptor desensitization under the same conditions, that is, no response was observed upon repeated addition of the same agonist, EGF, insulin or IGF-I. Thus, the EGF receptor-initiated signalling was mediated by PtdIns 3-kinase associated with tyrosine-phosphorylated IRSs in short-term cultured rat hepatocytes.  相似文献   

2.
Summary This study describes the distribution of heparan sulfate proteoglycan (HSPG) within the rat aorta using immunocytochemical (biotin-avidin-peroxidase) and immunoelectron microscopy (125I-autoradiography). Heparan sulfate proteoglycan was isolated from a basement membrane producing mouse EHS sarcoma (Hassell et al. 1980) and used to generate antisera in rabbits. Light microscopic observations revealed intense immunostaining of the intima and media of normal aorta, adventitial vasa vasorum, and aortic intimal fibromuscular thickenings induced by experimental injury (balloon de-endothelialization). Immunoelectron microscopy using 125I labeled antibodies to HSPG revealed that proteoheparan sulfate was localized to the amorphous layer of basement membrane below aortic and capillary endothelium. In addition, labeled anti-HSPG could be localized to the external lamina surrounding the smooth muscle cells in the hyperplastic intima. These studies reveal that antibodies prepared against a proteoheparan sulfate isolated from a basement membrane producting EHS sarcoma cross react with basement membrane structures within the aortic wall. Furthermore, these results demonstrate that the basement membranes beneath aortic and capillary endothelium and the external lamina surrounding aortic smooth muscle cells contain a heparan sulfate proteoglycan that is antigenically similar.  相似文献   

3.
Localization of proteoheparan sulfate in rat aorta   总被引:3,自引:0,他引:3  
This study describes the distribution of heparan sulfate proteoglycan ( HSPG ) within the rat aorta using immunocytochemical (biotin-avidin-peroxidase) and immuno-electron microscopy (125I-autoradiography). Heparan sulfate proteoglycan was isolated from a basement membrane producing mouse EHS sarcoma ( Hassell et al. 1980) and used to generate antisera in rabbits. Light microscopic observations revealed intense immunostaining of the intima and media of normal aorta, adventitial vasa vasorum, and aortic intimal fibromuscular thickenings induced by experimental injury (balloon de-endothelialization). Immunoelectron microscopy using 125I labeled antibodies to HSPG revealed that proteoheparan sulfate was localized to the amorphous layer of basement membrane below aortic and capillary endothelium. In addition, labeled anti- HSPG could be localized to the external lamina surrounding the smooth muscle cells in the hyperplastic intima. These studies reveal that antibodies prepared against a proteoheparan sulfate isolated from a basement membrane producing EHS sarcoma cross react with basement membrane structures within the aortic wall. Furthermore, these results demonstrate that the basement membranes beneath aortic and capillary endothelium and the external lamina surrounding aortic smooth muscle cells contain a heparan sulfate proteoglycan that is antigenically similar.  相似文献   

4.
The metabolism of heparan sulfate proteoglycan was studied in monolayer cultures of a rat hepatocyte cell line. Late log cells were labeled with 35SO4(2-) or [3H] glucosamine, and labeled heparan sulfate, measured as nitrous acid-susceptible product, was assayed in the culture medium, the pericellular matrix, and the intracellular pools. Heparan sulfate in the culture medium and the intracellular pools increased linearly with time, while that in the matrix reached a steady-state level after a 10-h labeling period. When pulse-labeled cells were incubated in unlabeled medium, a small fraction of the intracellular pool was released rapidly into the culture medium while the matrix heparan sulfate was taken up by the cells, and the resulting intracellular pool was rapidly catabolized. The structures of the heparan sulfate chains in the three pools were very similar. Both the culture medium pool and the cell-associated fraction of heparan sulfate contained proteoheparan sulfate plus a polydisperse mixture of heparan chains which were attached to little, if any, protein. Pulse-chase data suggested that the free heparan sulfate chains were formed as a result of catabolism of the proteoglycan. When NH4Cl, added to inhibit lysosomal function, was present during either a labeling period or a chase period, the total catabolism of the heparan sulfate chains to monosaccharides plus free SO2-4 was blocked, but the conversion of the proteoglycan to free heparan sulfate chains continued at a reduced rate.  相似文献   

5.
A variety of metabolic and biosynthetic pathways in chick embryo fibroblasts are stimulated coordinately by many unrelated exogenous agents. Three of the best characterized components of this coordinate response are the uptake of 2-deoxy-D-glucose (2-dGlc) and of uridine and the incorporation of thymidine into DNA. Insulin stimulates and cortisol inhibits the coordinate response. In cortisol-treated cultures, as little as 10?3 units/ml of insulin may stimulate thymidine incorporation 4-fold and 10?1 units/ml may stimulate as much as 40-fold. The higher concentrations of insulin completely override the inhibitory effect of cortisol. They also cause about a 5-fold stimulation of the uptake of 2-dGlc and of uridine and a 2-fold stimulation of proline incorporation into protein. The uptake rates of 2-dGlc and uridine double within 30 minutes after addition of insulin to cortisol-inhibited cultures, but the incorporation of thymidine only begins to increase markedly after a 4-hour delay. When cortisol is added to cultures in the absence of insulin, the rates of uptake of 2-dGlc and uridine begin to decrease within two hours, but the incorporation of thymidine remains constant for two hours before beginning to decrease. Deprivation of Mg2+ inhibits the accelerated coordinate response maintained by insulin, but does not further the inhibition induced by cortisol. Results with metabolic inhibitors indicate that the stimulation of 2-dGlc and uridine uptake by insulin do not require RNA synthesis, and also suggest that they do not require protein synthesis. These and other findings can be explained by a model for coordinate control in which insulin increases and cortisol decreases the availability of Mg2+ for a wide spectrum of regulatory reactions in different metabolic pathways. In this model both hormones affect only the rates of ongoing reactions and do not instruct the cell to carry out specific new reactions unless the cell was predetermined to do so.  相似文献   

6.
The importance of insulin for the in vivo effects of growth hormone (GH) on lipid and lipoprotein metabolism was investigated by examining the effects of GH treatment of hypophysectomized (Hx) female rats with and without concomitant insulin treatment. Hypophysectomy-induced changes of HDL, apolipoprotein (apo)E, LDL, and apoB levels were normalized by GH treatment but not affected by insulin treatment. The hepatic triglyceride secretion rate was lower in Hx rats than in normal rats and increased by GH treatment. This effect of GH was blunted by insulin treatment. The triglyceride content in the liver changed in parallel with the changes in triglyceride secretion rate, indicating that the effect of the hormones on triglyceride secretion was dependent on changed availability of triglycerides for VLDL assembly. GH and insulin independently increased editing of apoB mRNA, but the effects were not additive. The expression of fatty-acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and sterol regulatory element-binding protein-1c (SREBP-1c) was increased by GH treatment. Insulin and GH had no additive effects on these genes; instead, insulin blunted the effect of GH on SREBP-1c mRNA. In contrast to the liver, adipose tissue expression of SREBP-1c, FAS, or SCD-1 mRNA was not influenced by GH. In conclusion, the increased hepatic expression of lipogenic enzymes after GH treatment may be explained by increased expression of SREBP-1c. Insulin does not mediate the effects of GH but inhibits the stimulatory effect of GH on hepatic SREBP-1c expression and triglyceride secretion rate.  相似文献   

7.
Stimulation of cardiac muscarinic receptors leads to increases in the synthesis and hydrolysis of the membrane phospholipid phosphatidylinositol (PI). Carbachol stimulates PI hydrolysis in right and left murine atria as well as in murine ventricule and dissociated embryonic chick heart cells. Muscarinic stimulation of PI hydrolysis is markedly attenuated in calcium-free medium, is not antagonized by isoproterenol, occurs after a latency of several minutes, and is half-maximally activated by approximately 10 microM carbachol. In contrast, muscarinic inhibition of cyclic AMP accumulation in the same preparations is calcium independent, is opposed by the effect of isoproterenol, is maximal in minutes, and is half-maximally activated by 0.1 microM carbachol. These differences demonstrate that the two muscarinic receptor-mediated events are probably unrelated and independent responses. The concentration of carbachol that causes half-maximal activation of PI hydrolysis is almost identical to that causing half muscarinic receptor occupancy as assessed by 3H-labeled (-)-quinuclidinyl benzilate binding. Thus activation of the PI response by carbachol appears to be closely linked to receptor occupancy, whereas cyclase inhibition may occur when only a small percentage of receptors are occupied. The possible role of the PI response in generating intracellular signals such as arachidonic acid release, cyclic GMP synthesis, or C-kinase activation is discussed.  相似文献   

8.
Salinity reduces Ca2+ availability, transport, and mobility to growing regions of the plant and supplemental Ca2+ is known to reduce salinity damages. This study was undertaken to unravel some of the ameliorative mechanisms of Ca2+ on salt stress at the cellular and tissue levels. Zea mays L. plants were grown in nutrient solution containing 1 or 80 mM NaCl with various Ca2+ levels. Measurements of growth and physiological parameters, such as ion imbalance, indicated that the Ca2+-induced alleviation mechanisms differed between plant organs. Under salinity, H2O2 levels increased in the leaf-growing tissue with increasing levels of supplemental Ca2+ and reached the levels of control plants, whereas superoxide levels remained low at all Ca2+ levels, indicating that Ca2+ affected growth by increasing H2O2 but not superoxide levels. Salinity completely abolished apoplastic peroxidase activity. Supplemental Ca2+ increased its activity only slightly. However, under salinity, polyamine oxidase (PAO) activity was shifted toward the leaf base probably as an adaptive mechanism aimed at restoring normal levels of reactive oxygen species (ROS) at the expansion zone where NADPH oxidase could no longer provide the required ROS for growth. Interestingly, addition of Ca2+ shifted the PAO-activity peak back to its original location in addition to its enhancement. The increase in PAO activity in conjunction with low levels of apoplastic peroxidase is supportive of cellular growth via nonenzymatic wall loosening derived by the increase in H2O2 and less supportive of the peroxidase-mediated cross-linking of wall material. Thus extracellular Ca2+ can modulate ROS levels at specific tissue localization and developmental stages thereby affecting cellular extension.  相似文献   

9.
The roles of gastrin, somatotropic hormone, insulin, and glucose in the formation of long-term and acute adaptation of gastric secretion in wrestlers during sport and post-sport ontogeny are discussed. The basal secretion of hormones and the blood glucose level have been found to change with age in a wavelike manner. Ascents and declines of different waves of their time course correspond to sensitive stages of ontogeny. Changes in hormone secretion and the glucose level under bicycle ergometry are statistically nonsignificant in 90% of cases, but these changes are enough to obtain a final result, namely, an adequate level of protein hydrolysis as a result of physical activity.  相似文献   

10.
A soybean phospholipid mixture produced a concentration-dependent enhancement of beta subunit autophosphorylation of the detergent-soluble, purified human placental insulin receptor. Although phosphatidylcholine, phosphatidylethanolamine, or phosphatidylserine also increased insulin receptor autophosphorylation, only phosphatidylinositol (PtdIns) stimulated to a similar extent as the phospholipid mixture. The effect of PtdIns was biphasic, stimulating at low concentrations (75 microM), but having no stimulatory effect at high concentrations (1.0 mM). Phospholipids also stimulated the exogenous protein kinase activity of the insulin receptor toward histone H2B. Phosphorylation of PtdIns occurred with these purified insulin receptor preparations, but this activity was insulin-independent, and the turnover number for PtdIns phosphorylation in the presence of soybean phospholipid was 1/220th as small as the turnover number for the autophosphorylating activity. These results suggest that although PtdIns can modulate the activity of the insulin receptor kinase, PtdIns phosphorylation itself is not directly involved in this regulation.  相似文献   

11.
In this study, we explored the coordinate regulation of mTORC1 by insulin and amino acids. Rat livers were perfused with medium containing various concentrations of insulin and/or amino acids. At fasting (1×) or 2× (2×AA) concentrations of amino acids, insulin maximally stimulated Akt phosphorylation but had no effect on global rates of protein synthesis. In the absence of insulin, 4×AA produced a moderate stimulation of protein synthesis and activation of mTORC1. The combination of 4×AA and insulin produced a maximal stimulation of protein synthesis and activation of mTORC1. These effects were accompanied by decreases in raptor and PRAS40 and an increase in RagC associated with mTOR (mammalian target of rapamycin). The studies were extended to a cell culture model in which mTORC1 activity was repressed by deprivation of leucine and serum, and resupplementation with the amino acid and insulin acted in an additive manner to restore mTORC1 activation. In deprived cells, mTORC1 was activated by expressing either constitutively active (ca) Rheb or a caRagB·caRagC complex, and coexpression of the constructs had an additive effect. Notably, resupplementation with leucine in cells expressing caRheb or with insulin in cells expressing the caRagB·caRagC complex was as effective as resupplementation with both leucine and insulin in non-transfected cells. Moreover, changes in mTORC1 activity correlated directly with altered association of mTOR with RagB/RagC, Rheb, raptor, and PRAS40. Overall, the results suggest that amino acids signal through the Rag complex and insulin through Rheb to achieve coordinate activation of mTORC1.  相似文献   

12.
13.
Based on our previous observations that active ERK associates with and phosphorylates Gab1 in response to HGF, and the prediction that the ERK phosphorylation site is adjacent to one of the phosphatidylinositol 3-kinase (PI3K) SH2 binding motifs, we examined the possibility that ERK phosphorylation can regulate the Gab1/PI3K association. The HGF-mediated association of Gab1 with either full-length GST-p85 or its isolated N- or C-terminal SH2 domains was inhibited by approximately 50% in the setting of ERK inhibition, a result confirmed by co-immunoprecipitation of the native proteins. A 14-amino acid peptide encoding (472)YVPMTP(477) (one of the major p85 binding sites in Gab1 and the predicted ERK phosphorylation site) was synthesized with either phosphotyrosine alone (pY), or phosphotyrosine + phosphothreonine (pYT). In both pull-down assays and competition assays, pYT demonstrated a higher affinity for p85 than did pY alone. Finally, examination of the phosphorylation state of Akt after HGF stimulation revealed that ERK inhibition resulted in a decrease in Akt activation at both 5 and 10 min. These results suggest that activated ERK can phosphorylate Gab1 in response to HGF stimulation and thereby potentiate the Gab1/PI3K association and subsequent PI3K activation.  相似文献   

14.
When calf aortic tissue, preincubated under organ culture conditions in the presence of [35S]sulfate, was submitted to a sequential collagenase and elastase digestion and guanidinium chloride extraction, the bulk of proteoheparan sulfate was obtained in the elastase fraction. Ion-exchange chromatography on DEAE-cellulose of the elastase digest under dissociative conditions yielded a proteoglycan fraction that contained heparan sulfate as the sole glycosaminoglycan. The proteoheparan sulfate fraction was resolved into a high-molecular-mass (P-HS 1) and a low-molecular-mass (P-HS 2) fraction by gel filtration on Sephacryl S-400. P-HS 1 has a Mr of 175,000 and possesses four heparan sulfate side-chains (Mr 32,000) covalently bound to the protein core via a galactose- and xylose-containing polysaccharide-protein binding region. The protein core (Mr 38,000), which was obtained after deglycosylation of PG-HS 1 with trifluormethane sulfonic acid, contained in addition a few N-glycosidically linked oligosaccharide units representing a complex type with terminal neuraminic acid residues. P-HS 2 is a single-chain peptidoheparan sulfate of Mr of 38,000 containing one heparan sulfate chain (Mr 32,000) linked to a polypeptide (Mr 6000). The ratio of specific radioactivities of P-HS 1 and P-HS 2 was 1:0.66.  相似文献   

15.
Hepatocyte growth factor (HGF) has been known to enhance the growth of normal hepatocytes, but also to inhibit the growth of neoplastic cells. This article examines the involvement of HGF in the hepatocarcinogenesis caused by peroxisome proliferators (PPs). Up to 78 wk after male F-344 rats were orally given (4-chloro-6-[2,3-xylidino]-2-pyrimidinylthio) acetic acid (Wy-14,643), the hepatocarcinomas and (pre)neoplastic nodules in the livers were observed. At that time, the content of HGF and the expression of HGF mRNA in the liver tumors were significantly decreased. These changes were observed also in the liver of rats treated with other PPs, such as dehydroepiandrosterone and di(2-ethylhexyl)phthalate, but were not observed in tumors induced by genotoxic carcinogens (diethylnitrosamine-phenobarbital). In in vivo experiments, the formation of preneoplastic lesions and the tumors caused by Wy-14,643 administration were markedly suppressed by iv-injection of HGF in a dose-dependent manner. In the colony assay using (pre)neoplastic cells from livers of Wy-14,643-treated rats, HGF inhibited the colony formation of (pre)neoplastic cells in a dose-dependent manner. These findings may indicate that decreases in hepatic HGF levels are common and specific events induced by PPs, but not by genotoxic carcinogens, and that those changes play an important role in the promotion of neoplastic or preneoplastic cell growth induced by PPs.  相似文献   

16.
Correlations between heparan sulfate metabolism and hepatoma growth   总被引:2,自引:0,他引:2  
A rat hepatoma cell line (Gershenson et al., Science, 170:859-861, 1970) contains a dynamic steady-state pool of free heparan sulfate (HS) chains in the nucleus that increases in amount when growing cells reach confluence (Fedarko and Conrad, J. Cell Biol., 102:587-599, 1986). In logarithmically growing cells labeled with 35SO4(2-) steady-state levels of [35SO4]HS in the nucleus are altered by a variety of culture conditions. Rapidly dividing cells (doubling time = 18-22 h) growing under optimized conditions had steady-state levels of nuclear HS within the range of 40-50 pmol 35SO4 in nuclear HS/10(6) cells. The steady-state levels of nuclear HS were lowered by several changes in culture conditions, including 1) additions of 1 mM p-nitrophenyl-beta-D-xyloside, 0.25-0.5 mM (+)-catechin, 0.5 ng/ml transforming growth factor beta, 20 ng/ml phorbol-12-myristate-13-acetate, 1 mM dibutyryl cAMP, or 1 mM inositol-2-PO4; 2) decreased levels of D-glucose; or 3) deletions of serum, insulin, or inositol. In all cases lowering of the nuclear HS level was accompanied by an increase in the cell doubling times, suggesting a correlation in which nuclear HS levels must be optimized for maximal growth rates. When cells cultured under optimal growth conditions reached confluence, the level of nuclear HS increased threefold and the cells stopped dividing. The same culture conditions that lowered the steady-state levels of HS in the logarithmically growing cells prevented this rise in the nuclear HS as the cells reached confluence and resulted in loss of contact inhibition and overgrowth of the confluent cultures. These observations suggest a second correlation in which elevated nuclear HS levels are found when cell growth is inhibited at confluence; prevention of this rise results in continued growth. Consistent with this correlation between elevated nuclear HS and reduced growth rates, it was observed that addition of either 0.5 microgram/ml hydrocortisone or 0.05 microgram/ml retinoic acid to the culture medium of logarithmically growing cultures resulted in increases in steady-state levels of nuclear HS that were accompanied by increased cell doubling times. The two agents that increased the levels of nuclear HS in logarithmically growing cultures had little effect on levels of nuclear HS in confluent cells or on contact inhibition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
18.
19.
Proliferation of bronchial epithelial cells is an important biological process in physiological conditions and various lung diseases. The objective of this study was to determine how bronchial fibroblasts influence bronchial epithelial cell proliferation. The proliferative activity in cocultures was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and direct cells counts. Concentration of cytokines was measured in cell culture supernatants by means of ELISA. In primary cell cocultures, fibroblasts or fibroblast-conditioned medium enhanced 1.85-fold the proliferation of primary bronchial epithelial cells (P < 0.02) compared with bronchial epithelial cells cultured alone. The proliferative activity in cocultures and in fibroblast-conditioned medium was reduced by neutralizing antibody to hepatocyte growth factor (HGF) and HGF receptor c-met. Neutralizing antibodies to FGF-7 and IGF-1 had no effect. Treatment of fibroblast-epithelial cocultures with anti-IL-6 and anti-TNF-alpha neutralizing antibodies and with indomethacin decreased production of HGF. These results indicate that cytokines and PGE(2) may indirectly mediate epithelial cell proliferation via the regulation of HGF in bronchial stromal cells and that HGF plays a crucial role in proinflammatory cytokine-induced proliferation in the experimental system studied.  相似文献   

20.
Nitrate regulation of metabolism and growth.   总被引:17,自引:0,他引:17  
Recent research shows that signals derived from nitrate are involved in triggering widespread changes in gene expression, resulting in a reprogramming of nitrogen and carbon metabolism to facilitate the uptake and assimilation of nitrate, and to initiate accompanying changes in carbon metabolism. These nitrate-derived signals interact with signals generated further downstream in nitrogen metabolism, and in carbon metabolism. Signals derived from internal and external nitrate also adjust root growth and architecture to the physiological state of the plant, and the distribution of nitrate in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号