首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immature CD4- CD8+ murine thymocytes   总被引:8,自引:0,他引:8  
Mature thymocytes are usually defined and separated from other less mature thymocytes on the basis of their mutually exclusive expression of either CD4 or CD8. However, such murine "single positives" include a subpopulation of immature cells with properties resembling CD4- CD8- thymocytes or CD4+ CD8+ cortical blasts. Most of these immature single positives are CD4- CD8+, some expressing relatively low levels of CD8. They are large, dividing cortisone-sensitive cells found in the outer cortex. They express high levels of the heat-stable antigen (recognized by the monoclonals M1/69, B2A2, and J11d) but they are MEL-14-. The absence of detectable surface CD3, the absence of alpha-chain messenger RNA, and the predominance of the truncated form of the beta-chain messenger RNA all indicate that they do not express the T-cell antigen-receptor complex. Strategies for eliminating such immature cells from preparations of mature thymocytes are given, and their developmental significance is discussed.  相似文献   

2.
TCRbeta expression in CD4(-)CD8(-) double-negative (DN) thymocytes induces signaling pathways that promote survival and proliferation, as well as differentiation into CD4(+)CD8(+) double-positive thymocytes. The signaling pathways that regulate survival, proliferation, and differentiation remain unclear. We used Gads-deficient mice to investigate the signaling pathways that regulate these cell fates. During this investigation, we focused on TCRbeta(+) DN thymocytes and found that there are at least three functionally distinct subsets of TCRbeta(+) DN thymocytes: TCRbeta(+) DN3E, TCRbeta(+) DN3L, and TCRbeta(+) DN4. Survival and proliferation of TCRbeta(+) DN3E were independent of Gads, but survival and proliferation of TCRbeta(+) DN3L cells were Gads dependent. Likewise, expression of Bcl-2 in TCRbeta(+) DN3E cells was Gads independent, but Gads was necessary for Bcl-2 expression in TCRbeta(+) DN3L cells. Bcl-2 expression was not dependent on Gads in TCRbeta(+) DN4 cells, but proliferation of TCRbeta(+) DN4 cells was Gads dependent. Gads was not required for the differentiation of DN thymocytes into DP thymocytes. In fact, Gads(-/-) DN3E cells differentiated into DP thymocytes more readily than wild-type cells. We conclude that signaling pathways required to initiate TCRbeta-induced survival and proliferation are distinct from the pathways that maintain survival and proliferation. Furthermore, signaling pathways that promote survival and proliferation may slow differentiation.  相似文献   

3.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

4.
The long terminal repeat from a thymotropic mouse mammary tumor virus variant, DMBA-LV, was used to drive the expression of two reporter genes, murine c-myc and human CD4, in transgenic mice. Expression was observed specifically in thymic immature cells. Expression of c-myc in these cells induced oligoclonal CD4+ CD8+ T-cell thymomas. Expression of human CD4 was restricted to thymic progenitor CD4- CD8- and CD4+ CD8+ T cells and was shut off in mature CD4+ CD8- and CD4- CD8+ T cells, known to be derived from the progenitor double-positive T cells. These results suggest the existence of similar and common factors in CD4+ CD8- and CD4- CD8+ T cells and support a model of differentiation of CD4+ CD8+ T cells through common signal(s) involved in turning off the expression of the CD4 or CD8 gene.  相似文献   

5.
Recent studies have focused on the potential role of accessory molecules such as CD2, CD28, Thy-1, or TAP in the delivery of activating signals to thymocytes through antigen-independent pathways. To better understand the molecular interactions involved in the expansion of early thymic immigrants, rat mAb were raised against murine thymocyte-surface molecules and screened for their capacity to trigger thymocyte proliferation. One of these mAb (H194-112, IgG2a) was found to recognize a novel heterodimeric thymocyte-activating molecule (THAM) of Mr = 110,000 to 128,000. Flow cytometric analyses and staining patterns on frozen thymus sections subdivided adult thymocytes in three subsets expressing THAM at either low (10%), moderate (80%), or high (5 to 8%) cell-surface density; these cell groups were found to correspond, respectively, to the medullary, the cortical, and the immature CD4-CD8-, J11d+ thymocytes, in which the T cell precursor pool is included. Moreover, most (90%) day 16 fetal thymocytes were also found to upregulate THAM cell-surface expression. The THAMhigh cells were localized in the subcapsular area of the neonatal thymus and scattered throughout the adult organ. Cross-linked mAb H194-112 induced the proliferation of both immature and mature thymocytes in the presence of either PMA or IL-1 and IL-2. The observation that early thymocytes up-regulate THAM along with the IL-2R suggests that this molecule might be involved in an important activation pathway during thymocyte differentiation.  相似文献   

6.
IL-7 maintains the T cell precursor potential of CD3-CD4-CD8- thymocytes.   总被引:10,自引:0,他引:10  
We and other investigators have reported that IL-4 (in the presence of PMA) or IL-7 (used alone) induce proliferation of both adult and fetal (gestation day 15) CD4-CD8- thymocytes. These results suggested that these cytokines may be growth factors for pre-T cells. However, we recently observed that among adult CD4-CD8- thymocytes, only the CD3+ subset proliferates in response to IL-7, whereas IL-4 + PMA induces proliferative responses in both CD3- and CD3+ subsets. Thus, we concluded that IL-7 used alone is not a potent growth stimulus for adult thymic CD3-CD4-CD8- triple negative (TN) T cell precursors. Interestingly, the viability of adult TN thymocytes in culture was improved by IL-7 for up to 1 wk, in spite of the inability of IL-7 to induce significant [3H]TdR incorporation in these cells. After culture in IL-7 for 4 days, the viable cells remained CD4-CD8-, but 25 to 35% expressed CD3 whereas the rest remained CD3-. In contrast, most of the cells cultured with IL-4 + PMA for 4 days remained TN. To investigate whether adult TN thymocytes that survive in vitro in the presence of IL-4 + PMA or IL-7 retain T cell progenitor potential, we tested whether they could reconstitute lymphoid cell-depleted (2-deoxyguanosine-treated) fetal thymus organ cultures. Our results demonstrate that TN cells cultured in IL-7 retain T cell progenitor potential.  相似文献   

7.
The regulation of apoptosis in mature CD4+ or CD8+ alphabeta+ T cells has been well studied. How the survival and death is regulated in peripheral CD4-CD8- (double negative, DN) alphabeta+ T cells remains unknown. Recent studies suggest that peripheral DN T cells may play an important role in the regulation of the immune responses mediated by CD4+ or CD8+ T cells. Here, we used immunosuppressive DN T cell clones to elucidate the mechanisms involved in the regulation of death and survival of alphabeta+ DN T cells. The DN T cell clones were generated from the spleen cells of 2C transgenic mice, which express the transgenic TCR specific for Ld and permanently accepted Ld+ skin allografts after pretransplant infusion of Ld+ lymphocytes. We report that 1) the mature DN T cells are highly resistant to TCR cross-linking-induced apoptosis in the presence of exogenous IL-4; 2) Fas/Fas-ligand and TNF-alpha/TNFR pathways do not play an apparent role in regulating apoptosis in DN T cells; 3) the DN T cells constitutively express a high level of Bcl-xL, but not Bcl-2; 4) both Bcl-xL and Bcl-2 are up-regulated following TCR-cross-linking; and 5) IL-4 stimulation significantly up-regulates Bcl-xL and c-Jun expression and leads to mitogen-activated protein kinase phosphorylation in DN T cells, which may contribute to the resistance to apoptosis in these T cells. Taken together, these results provide us with an insight into how mature DN T cells resist activation-induced apoptosis to provide a long-term suppressor function in vivo.  相似文献   

8.
The V beta 8-specific mAb F23.1 and KJ16 were used as fluorescent stains to test for TCR expression on the surface of subpopulations of early, CD4-CD8- (L3T4-Ly-2-) thymocytes from adult CBA mice. A surprisingly high proportion (27%) of Ly-2-L3T4- thymocytes were strongly F23.1 and KJ16 positive. No positive cells were detected among Ly-2-L3T4- thymocytes from V beta 8-negative SJL mice. In contrast to the adult thymus, Ly-2-L3T4- cells from embryonic CBA thymus lacked F23.1-positive cells. Subsets of adult CBA Ly-2-L3T4- thymocytes were separated to determine which expressed V beta 8. The major subset, Ly-1 low B2A2-M1/69+Thy-1+Pgp-1-, representing a phenotype similar to embryonic Ly-2-L3T4- thymocytes and the phenotype commonly isolated from adult thymocytes as Ly-1 "dull," lacked cells strongly positive for F23.1. In contrast, a series of subsets of adult CBA Ly-2-L3T4- thymocytes which were B2A2-M1/69- and Pgp-1+ all included strongly F23.1-positive cells. A minor subset, negative for most markers except Pgp-1 and presumed on the basis of this phenotype and some reconstitution studies to include the earliest intrathymic precursors, contained 28% F23.1-positive cells. However, no F.23.1-positive cells were detected in equivalent "prethymic" populations from bone marrow or from athymic mouse spleen. The subsets of Ly-2-L3T4- thymocytes which were Ly-1 high, B2A2-M1/69-, and Pgp-1+ all contained about 70% F23.1-positive cells, indicating a V beta 8 usage much higher than the mature T cell average. These results indicate that a series of distinct developmental events have occurred within these CD4-CD8- thymocytes previously considered as a single group of early precursor cells, and that some aspects of repertoire selection may be occurring amongst thymocytes which lack CD4 or CD8.  相似文献   

9.
The functional capabilities of human peripheral blood CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones were examined. The clones were generated by culturing purified populations of CD3+CD4-CD8- and CD3+CD4+CD8+ T cells at limiting dilution (0.3 cell/well) in the presence of PHA, rIL-2, and irradiated PBMC as feeders. Twelve CD3+CD4-CD8- and 5 CD3+CD4+CD8+ clones were generated. Clonality was documented by analyzing TCR gamma- and beta-chain rearrangement patterns. All CD3+CD4-CD8- clones were stained by the TCR-delta 1 mAb that identifies a framework epitope of the TCR delta-chain, but not by mAb WT31 that identifies the TCR-alpha beta on mature T cells. In contrast, the CD3+CD4+CD8+ clones were all stained by WT31 and not by TCR-delta 1. All 17 clones were screened for various functional activities. Each secreted IL-2, IFN-gamma, and lymphotoxin/TNF-like factors when stimulated with immobilized mAb to CD3 (64.1), albeit in varying quantities. These clones secreted far less IL-2 and IFN-gamma than CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta expressing clones, but comparable amounts of lymphotoxin/TNF. All clones also functioned as MHC-unrestricted cytotoxic cells. This activity was comparable to that mediated by the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. Nine of 12 CD3+CD4-CD8- and 4 of 5 CD3+CD4+CD8+ clones were able to support B cell differentiation when activated by immobilized anti-CD3, but usually not as effectively as the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. The differences in the functional capabilities of the various clones could not be accounted for by alterations in the signaling capacity of the CD3 molecular complex as mAb to CD3 induced comparable increases in intracellular free calcium in each clone examined. When clones were stimulated with PWM, each suppressed B cell differentiation supported by mitomycin C-treated fresh CD4+ T lymphocytes. Suppression was dependent on the number of clone cells added to culture, but could be observed with as few as 12,500 cells per microtiter well. Phenotypic analysis of the clones revealed that all expressed CD29, CD11b, and the NKH1 surface Ag. These results demonstrate that the CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones exhibit many of the functional characteristics of mature T cells, although they produce IL-2 and IFN-gamma and provide help for B cell differentiation less effectively than CD3+CD4+CD8- and CD3+CD4-CD8+ alpha beta T cell clones.  相似文献   

10.
Human triple-negative (CD4-CD8-CD3-) thymocytes purified from postnatal thymus by the use of magnetic bead columns and cell sorting were cultured in bulk or cloned with a feeder cell mixture of irradiated PBL, irradiated JY cells, and PHA. Triple-negative thymocytes proliferated well under these culture conditions, and after 12 days in bulk culture they remained triple negative. Limiting dilution experiments revealed that the frequency of clonogenic cells in fresh triple-negative thymocytes was less than 1%. Of 40 clones obtained in a representative experiment, 37 were triple negative and 3 were CD4+ TCR-alpha beta+. No TCR-gamma delta+ clones were isolated. Some of the triple-negative clones expressed CD16 and were apparently NK cells. Seven representative CD16-triple-negative clones were expanded and characterized in detail. These clones shared the common cell surface phenotype of CD1-CD2+CD3-CD4--CD8-CD5-CD7+CD16-CD56+. One of them expressed cytoplasmic CD3 delta and CD3 epsilon Ag, but these Ag were not detected in any peripheral blood-derived CD16- NK clones examined for comparison. The seven CD16- thymus-derived clones exhibited significant cytolytic activity against K562. The clone that expressed cytoplasmic CD3 Ag was shown to have the germ-line configuration of the TCR-beta and TCR-gamma genes. Thus, it is suggested that in vitro culture of triple-negative thymocytes can give rise to NK-like cells, including those that express cytoplasmic CD3 Ag. In contrast to previous reports, our results gave no evidence of differentiation of triple-negative thymocytes into TCR-alpha beta+ or TCR-gamma delta+ T cells.  相似文献   

11.
Immune-based therapy confers limited benefits to hosts bearing late-stage tumors. Mounting evidence points to local suppression of T cell function as the most substantial barrier to effective antitumor immunity in hosts with large tumor burdens. Despite this, events responsible for locally defective T cells and immune suppression in tumors remain unclear. We describe in this study a predominant T cell population localized within two murine tumors that is characterized by expression of apoptotic markers and TCRalphabeta/CD3, but not CD4, CD8, or NK-associated markers. These defective cells resembled double negative (DN) T cells in lpr mice, harbored defects in the expression of T cell signaling molecules, and produced the anti-inflammatory cytokine, IL-10. Conditions known to increase or decrease the accumulation of lpr DN T cells had corresponding effects on local DN tumor infiltrating lymphocyte (TIL) levels and inversely impacted host survival. Adoptive transfer into s.c. tumors demonstrated that naive CD8(+) T cells were highly susceptible to becoming DN TIL, and local supplementation of tumors with nontumor Ag-bearing MHC class I-expressing fibroblasts decreased both this susceptibility and endogenous DN TIL levels. These findings identify a major defective T cell population with suppressive potential within tumors. The data also suggest that local T cell defectiveness is controlled by the tumor environment independent of cognate Ag specificity per se. Decreasing defective DN TIL levels by increasing noncognate peptide MHC class I availability, or modulating TCR or cytokine signaling may facilitate host survival by bolstering endogenous immunity to late-stage tumors, and may help improve therapeutic tumor vaccines.  相似文献   

12.
Putative early thymocytes, the Ly-2-L3T4-(CD8-CD4-) cells representing 3 to 4% of adult CBA mouse thymic lymphocytes, were isolated in high purity (99.5%). They were then stained by using mAb and analyzed by flow cytometry for the expression of six additional surface antigenic markers. Cross-correlation of the data obtained from a complete series of successive two-parameter analyses revealed the existence of about 11 discrete subsets, falling into four-main groups, within the Ly-2-L3T4- population. All subsets consisted of relatively large lymphoid cells. The most numerous group of Ly-2-L3T4- cells was Ly-1 low B2A2-M1/69 high Thy-1 high Pgp-1 low and by these markers resembled Ly-2+L3T4+ cortical blasts. Many of the cells in this group were positive for the IL-2R and/or for MEL-14. A second major group of Ly-2-L3T4- cells was Ly-1 high B2A2-M1/69 low Pgp-1 high, and resembled in some respects activated mature T cells. This group had previously been shown to be absent from the embryonic thymus. The group could be divided into Thy-1 high and Thy-1 low subsets. None of the cells in this group were positive for the IL-2R and very few expressed MEL-14. A third group, 13% of the Ly-2-L3T4- population, was Ly-1 low B2A2-M1/69 low Pgp-1 high, and could also be divided into Thy-1 high and Thy-1 low subsets. A final minor group, 9% of the Ly-2-L3T4- population, was Ly-1 high B2A2-M1/69 high Pgp-1 low Thy-1 high. The particular pattern of markers on these subsets, combined with subsequent information on their properties, makes it unlikely that they all represent sequential steps in one continuous developmental stream, and indicates that complex developmental steps have occurred, even at this supposedly early stage of T cell differentiation.  相似文献   

13.
14.
CD4-, CD8- thymocytes were purified from thymi obtained from normal C57BL/6 mice. By flow cytometry analysis, 5 to 10% of these double negative (DN) thymocytes were found to express NK1.1 on their surface. The NK1.1+ DN thymocytes were demonstrated, by two-color fluorescence, to be CD3lo, CD5hi, CD44hi, J11d-, B220-, MEL 14-, IL2R- with 60% expressing TCR-V beta 8 as determined by the mAb F23.1. In contrast, splenic and peripheral blood NK cells were NK1.1+, CD3-, CD5-, TCR-V beta 8- with 40 to 60% being MEL 14+. Unlike peripheral NK cells, fresh DN thymocytes enriched for NK1.1+ cells were unable to kill YAC-1, the classical murine NK cell target. However, these cells were able to mediate anti-CD3 redirected lysis even when they were assayed immediately after purification, i.e., with no culture or stimulation. These data demonstrate that adult murine thymocytes contain NK1.1+ cells which are distinct, both by function and phenotype, from peripheral NK cells. These data also raise the issue of a possible NK/T bipotential progenitor cell.  相似文献   

15.
16.
Phenotypic analysis of the medullary-type CD4+CD8- (CD4SP) thymocytes have revealed phenotypic heterogeneity within these cells. The phenotype of mature peripheral T cells is Qa-2+ HSA- CD69-, whereas in the medullary-type CD4SP thymocytes, the expression pattern of many markers were quite different, suggesting that the medullary-type CD4SP thymocytes may undergo phenotypic maturation. According to the results of two-color cytometry, seven discrete phenotypes were defined by the relative expression of Qa-2, HSA, CD69, 3G11 and 6C10: 3G11-6C10+CD69+HSAhi-->3G11+6C10+CD69+ HSAhi-->3G11+6C10-CD69+HSAint-->3G11+6C10- CD69-HSAint Qa-2(-)-->3G11+HSAlo/-Qa-2lo, at the same time, 3G11+6C10-CD69-HSAint Qa-2(-)-->3G11-HSAlo Qa-2(-)-->3G11-HSAlo/- Qa-2hi, the last two Qa-2 positive subsets could exit the thymus and home into periphery.  相似文献   

17.
Classical CD4(+) and CD8(+) T cells recognize Ag presented by MHC class II (MHCII) and MHC class I (MHCI), respectively. However, our results show that CD4(-/-) mice mount a strong, readily detectable CD8(+) T cell response to MHCII-restricted epitopes after a primary bacterial or viral infection. These MHCII-restricted CD8(+)CD4(-) T cells are more similar to classical CD8(+) T cells than to CD4(+) T cells in their expression of effector functions during a primary infection, yet they also differ from MHCI-restricted CD8(+) T cells by their inability to produce high levels of the cytolytic molecule granzyme B. After resolution of a primary infection, epitope-specific MHCII-restricted T cells in CD4(-/-) mice persist for a long period of time as memory T cells. Surprisingly, upon reinfection the secondary MHCII-restricted response in CD4(-/-) mice consists mainly of CD8(-)CD4(-) T cells. In contrast to CD8(+) T cells, MHCII-restricted CD8(-)CD4(-) T cells are capable of producing IL-2 in addition to IFN-gamma and thus appear to have attributes characteristic of CD4(+) T cells rather than CD8(+) T cells. Therefore, MHCII-restricted T cells in CD4(-/-) mice do not share all phenotypic and functional characteristics with MHCI-restricted CD8(+) T cells or with MHCII-restricted CD4(+) T cells, but, rather, adopt attributes from each of these subsets. These results have implications for understanding thymic T cell selection and for elucidating the mechanisms regulating the peripheral immune response and memory differentiation.  相似文献   

18.
We have used the intra-thymic transfer system to investigate the population dynamics of thymocyte and mature T cell subsets in the absence of continuing precursor input from the bone marrow. We have followed the development and life span of CD4+ and CD8+ thymocyte subsets and mature peripheral T cells from intra-thymically injected adult or fetal CD4-8- thymic precursors. Both precursor types proliferated, differentiated, and exported to peripheral lymphoid tissues alpha beta-TCR+CD4+8- and CD4-8+ progeny which formed a stable, long-lived component of the peripheral T cell pool. The production of phenotypically mature thymocytes and peripheral T cells occurred more rapidly from fetal CD4-8- precursors. CD4+8-:CD4-8+ ratios among peripheral progeny of intra-thymically-injected CD4-8- precursors were initially normal, but they steadily declined among progeny of the fetal precursors. Thus, there appear to be differences in the life span and/or proliferative capacity of mature T cells derived from embryonic vs adult progenitors. In addition to the predominant CD4+8- and CD4-8+ subsets of peripheral T cells, a minor (1 to 20%) population of Thy-1+CD3+4-8- T cells was identified among peripheral progeny of intra-thymically-injected CD4-8- thymocytes, as well as in lymph nodes of unmanipulated animals. A total of 20 to 34% of this subset expressed V beta 8+ TCR and the majority were CD5hi, Pgp-1+, and J11d-. The function and specificity of this newly identified population of thymically derived peripheral T cells remains to be investigated.  相似文献   

19.
The orphan steroid receptor, Nur77, is thought to be a central participant in events leading to TCR-mediated clonal deletion of immature thymocytes. Interestingly, although both immature and mature murine T cell populations rapidly up-regulate Nur77 after TCR stimulation, immature CD4+CD8+ thymocytes respond by undergoing apoptosis, whereas their mature descendants respond by dividing. To understand these developmental differences in susceptibility to the proapoptotic potential of Nur77, we compared its regulation and compartmentalization and show that mature, but not immature, T cells hyperphosphorylate Nur77 in response to TCR signals. Nur77 resides in the nucleus of immature CD4+CD8+ thymocytes throughout the course of its expression and is not found in either the organellar or cytoplasmic fractions. However, hyperphosphorylation of Nur77 in mature T cells, which is mediated by both the MAPK and PI3K/Akt pathways, shifts its localization from the nucleus to the cytoplasm. The failure of immature CD4+CD8+ thymocytes to hyperphosphorylate Nur77 in response to TCR stimulation may be due in part to decreased Akt activity at this developmental stage.  相似文献   

20.
Due to their potent immunostimulatory capacity, dendritic cells (DC) have become the centerpiece of many vaccine regimens. Immature DC (DCimm) capture, process, and present Ags to CD4(+) lymphocytes, which reciprocally activate DCimm through CD40, and the resulting mature DC (DCmat) loose phagocytic capacity, but acquire the ability to efficiently stimulate CD8(+) lymphocytes. Recombinant vaccinia viruses (rVV) provide a rapid, easy, and efficient method to introduce Ags into DC, but we observed that rVV infection of DCimm results in blockade of DC maturation in response to all activation signals, including CD40L, monocyte-conditioned medium, LPS, TNF-alpha, and poly(I:C), and failure to induce a CD8(+) response. By contrast, DCmat can be infected with rVV and induce a CD8(+) response, but, having lost phagocytic activity, fail to process the Ag via the exogenous class II pathway. To overcome these limitations, we used the CMV protein pp65 as a model Ag and designed a gene containing the lysosomal-associated membrane protein 1 targeting sequence (Sig-pp65-LAMP1) to target pp65 to the class II compartment. DCmat infected with rVV-Sig-pp65-LAMP1 induced proliferation of pp65-specific CD4(+) clones and efficiently induced a pp65-specific CD4(+) response, suggesting that after DC maturation the intracellular processing machinery for class II remains intact for at least 16 h. Moreover, infection of DCmat with rVV-Sig-pp65-LAMP1 resulted in at least equivalent presentation to CD8(+) cells as infection with rVV-pp65. These results demonstrate that despite rVV interference with DCimm maturation, a single targeting vector can deliver Ags to DCmat for the effective simultaneous stimulation of both CD4(+) and CD8(+) cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号