首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromatofocusing on Mono P proved to be an efficient purification procedure for the NADPH-dependent reductase from soybean (Glycine max L.) cell cultures which acts together with chalcone synthase in the biosynthesis of 2',4',4-trihydroxychalcone (6'-deoxychalcone). By isoelectric focusing the pI of reductase was determined to be 6.3. Addition of pure soybean reductase to cell-free extracts from stimulated cell cultures of parsley and bean (Phaseolus vulgaris) and from young flowers of Dahlia variabilis caused in each case synthesis of 6'-deoxychalcone. When 4-coumaroyl-CoA was replaced by caffeoyl-CoA in the reductase assay, formation of 2',4',3,4-tetrahydrochalcone (butein) was observed. A polyclonal antireductase antiserum was raised in rabbits and proved to be specific in Ouchterlony diffusion experiments, Western blots and immunotitration. The reductase antiserum showed no cross-reactivity with soybean chalcone synthase (CHS). A biotin/[125I]streptavidin system provided a quantitative Western blot for the reductase. Changes in the activities, amounts of protein, and mRNA activities of reductase and CHS were determined after challenge of soybean cell cultures by elicitor (from Phytophthora megasperma f.sp. glycinea or yeast). For both enzymes a pronounced and parallel increase in activity and amounts of protein was observed after elicitor addition with a maximum at about 16 h after challenge. Parallel increases in mRNA activities occurred earlier. The results indicate a parallel induction of de novo synthesis of reductase and CHS which coact in synthesis of 6'-deoxychalcone.  相似文献   

2.
In soybean (Glycine max L.), pathogen attack induces the formation of glyceollin-type phytoalexins. The biosynthetic key enzyme is a reductase which synthesizes 4,2', 4'-trihydroxychalcone in co-action with chalcone synthase. Screening of a soybean cDNA library from elicitor-induced RNA in lambda gt11 yielded two classes of reductase-specific clones. The deduced proteins match to 100% and 95%, respectively, with 229 amino acids sequenced in the purified plant protein. Four clones of class A were expressed in Escherichia coli, and the proteins were tested for enzyme activity in extracts supplemented with chalcone synthase. All were active in 4,2',4'-trihydroxychalcone formation, and the quantification showed that shorter lengths of the cDNAs at the 5' end correlated with progressively decreasing enzyme activities. Genomic blots with DNA from plants capable of 4,2',4'-trihydroxychalcone synthesis revealed related sequences in bean (Phaseolus vulgaris L.) and peanut (Arachis hypogaea L.), but not in pea (Pisum sativum L.). No hybridization was observed with parsley (Petroselinum crispum) and carrot (Daucus carota) which synthesize other phytoalexins. The reductase protein contains a leucine-zipper motif and reveals a marked similarity with other oxidoreductases most of which are involved in carbohydrate metabolism.  相似文献   

3.
Higher plant nitrate reductase can be divided into three functional domains representing its prosthetic groups: 1) flavin; 2) cytochrome b; and 3) Mo-pterin. The flavin domain has been synthesized by heterologous expression in Escherichia coli using a fragment of a corn leaf NADH:nitrate reductase cDNA clone, Zmnr1, which we had previously isolated and sequenced. A Xho2-BamH1 fragment was cut from Zmnr1, containing the sequence for the flavin domain, and ligated in the BamH1 site of expression vector pET3c. When this construct was expressed in E. coli, a 30 kD polypeptide was found to be newly synthesized. The flavin domain was purified to homogeneity using blue Sepharose and shown to have a molecular weight of 30 kD. The recombinant flavin domain has a ferricyanide reductase specific activity of 1000 mumols NADH oxidized/min/mg protein and a visible spectrum virtually identical to that of human NADH:cytochrome b5 reductase.  相似文献   

4.
Electrophoretic evidence was obtained for two forms of pyrroline-5-carboxylate reductase (P5CR) in soybean nodules. One form was purified over 2300-fold. The apparent sizes of the polypeptides comprising the pyrroline-5-carboxylate reductases from soybean cytosol (29,700) and Escherichia coli (28,000) were consistent with those predicted from the sequences of the genes encoding them (Deutch et al., 1982 Nucleic Acid Res. 10, 7701-7714; Delauney and Verma, 1990 Mol. Gen. Genet. 221, 299-305). Primary structural analysis of the intact soybean P5CR subunit indicated that the amino-terminal residue is blocked. Analyses of a 12-mer and a 21-mer isolated from a cyanogen bromide digest were consistent with the proposition that the soybean P5CR isolated in these studies is very similar, although perhaps not identical, to the polypeptide predicted for the recently cloned soybean reductase (Delauney and Verma, 1990 Mol. Gen. Genet. 221, 299-305).  相似文献   

5.
6.
7.
The gene for ribonucleotide reductase from Anabaena sp. strain PCC 7120 was identified and expressed in Escherichia coli. This gene codes for a 1,172-amino-acid protein that contains a 407-amino-acid intein. The intein splices itself from the protein when it is expressed in E. coli, yielding an active ribonucleotide reductase of 765 residues. The mature enzyme was purified to homogeneity from E. coli extracts. Anabaena ribonucleotide reductase is a monomer with a molecular weight of approximately 88,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Superose 12 column chromatography. The enzyme reduces ribonucleotides at the triphosphate level and requires a divalent cation and a deoxyribonucleoside triphosphate effector. The enzyme is absolutely dependent on the addition of the cofactor, 5'-adenosylcobalamin. These properties are characteristic of the class II-type reductases. The cyanobacterial enzyme has limited sequence homology to other class II reductases; the greatest similarity (38%) is to the reductase from Lactobacillus leichmannii. In contrast, the Anabaena reductase shows over 90% sequence similarity to putative reductases found in genome sequences of other cyanobacteria, such as Nostoc punctiforme, Synechococcus sp. strain WH8102, and Prochlorococcus marinus MED4, suggesting that the cyanobacterial reductases form a closely related subset of the class II enzymes.  相似文献   

8.
9.
The narcotic analgesic morphine is the major alkaloid of the opium poppy Papaver somniferum. Its biosynthetic precursor codeine is currently the most widely used and effective antitussive agent. Along the morphine biosynthetic pathway in opium poppy, codeinone reductase catalyzes the NADPH-dependent reduction of codeinone to codeine. In this study, we have isolated and characterized four cDNAs encoding codeinone reductase isoforms and have functionally expressed them in Escherichia coli. Heterologously expressed codeinone reductase-calmodulin-binding peptide fusion protein was purified from E. coli using calmodulin affinity column chromatography in a yield of 10 mg enzyme l-1. These four isoforms demonstrated very similar physical properties and substrate specificity. As least six alleles appear to be present in the poppy genome. A comparison of the translations of the nucleotide sequences indicate that the codeinone reductase isoforms are 53% identical to 6'-deoxychalcone synthase from soybean suggesting an evolutionary although not a functional link between enzymes of phenylpropanoid and alkaloid biosynthesis. By sequence comparison, both codeinone reductase and 6'-deoxy- chalcone synthase belong to the aldo/keto reductase family, a group of structurally and functionally related NADPH-dependent oxidoreductases, and thereby possibly arise from primary metabolism.  相似文献   

10.
From a genomic library of Zymomonas mobilis prepared in Escherichia coli, two clones (carrying pZH4 and pZH5) resistant to the mercuric ion were isolated. On partial restriction analysis these two clones appeared to have the same 2.9 kb insert. Mercuric reductase activity was assayed from the Escherichia coli clone carrying pZH5 and it was Hg(2+)-inducible, NADH dependent and also required 2-mercaptoethanol for its activity. The plasmid pZH5 encoded three polypeptides, mercuric reductase (merA; 65 kDa), a transport protein (merT 18-17 kDa) and merC (15 kDa) as analysed by SDS-PAGE. Southern blot analysis showed the positive signal for the total DNA prepared from Hgr Z. mobilis but not with the Hgs strain which was cured for a plasmid (30 kb). These results were also confirmed by isolating this plasmid from Hgr Z. mobilis and transforming into E. coli. Moreover the plasmid pZH5 also hybridized with the mer probes derived from Tn21.  相似文献   

11.
2,4-Dienoyl-CoA reductase is an enzyme that is required for the beta-oxidation of unsaturated fatty acids with even-numbered double bonds. The 2,4-dienoyl-CoA reductase from Escherichia coli was studied to explore the catalytic and structural properties that distinguish this enzyme from the corresponding eukaryotic reductases. The E. coli reductase was found to contain 1 mol of flavin mononucleotide and 4 mol each of acid-labile iron and sulfur in addition to 1 mol of flavin adenine dinucleotide per mole of protein. Redox titrations revealed a requirement for 5 mol of electrons to completely reduce 1 mol of enzyme and provided evidence for the formation of a red semiquinone intermediate. The reductase caused a significant polarization of the substrate carbonyl group as indicated by an enzyme-induced red shift of 38 nm in the spectrum of 5-phenyl-2,4-pentadienoyl-CoA. However, suspected cis --> trans isomerase and Delta(3),Delta(2)-enoyl-CoA isomerase activities were not detected in this enzyme. It is concluded that the 2, 4-dienoyl-CoA reductases from E. coli and eukaryotic organisms are structurally and mechanistically unrelated enzymes that catalyze the same type of reaction with similar efficiencies.  相似文献   

12.
13.
We previously cloned and sequenced a cDNA encoding soybean ferric leghemoglobin reductase (FLbR), an enzyme postulated to play an important role in maintaining leghemoglobin in a functional ferrous state in nitrogen-fixing root nodules. This cDNA was sub-cloned into an expression plasmid, pTrcHis C, and overexpressed in Escherichia coli. The recombinant FLbR protein, which was purified by two steps of column chromatography, was catalytically active and fully functional. The recombinant FLbR cross-reacted with antisera raised against native FLbR purified from soybean root nodules. The recombinant FLbR, the native FLbR purified from soybean (Glycine max L.) root nodules, and dihydrolipoamide dehydrogenases from pig heart and yeast had similar but not identical ultraviolet-visible absorption and fluorescence spectra, cofactor binding, and kinetic properties. FLbR shared common structural features in the active site and prosthetic group binding sites with other pyridine nucleotide-disulfide oxidoreductases such as dihydrolipoamide dehydrogenases, but displayed different microenvironments for the prosthetic groups.  相似文献   

14.
The active site sequence of T4 thioredoxin, Cys-Val-Tyr-Cys, has been modified in two positions to Cys-Gly-Pro-Cys to mimic that of Escherichia coli thioredoxin. The two point mutants Cys-Gly-Tyr-Cys and Cys-Val-Pro-Cys have also been constructed. The mutant proteins have similar reaction rates with T4 ribonucleotide reductase as has the wild-type T4 thioredoxin. Mutant T4 thioredoxins with Pro instead of Tyr at position 16 in the active site sequence have three to four times lower apparent KM with E. coli ribonucleotide reductase than wild-type T4 thioredoxin. The KM values for these mutant proteins which do not have Tyr in position 16 are thus closer to E. coli thioredoxin than to the wild-type T4 thioredoxin. The bulky tyrosine side chain probably prevents proper interactions to E. coli ribonucleotide reductase. Also the redox potentials of these two mutant thioredoxins are lower than that of the wild-type T4 thioredoxin and are thereby more similar to the redox potential of E. coli thioredoxin. Mutations in position 15 behave more or less like the wild-type protein. The kinetic parameters with E. coli thioredoxin reductase are similar for wild-type and mutant T4 thioredoxins except that the apparent kcat is lower for the mutant protein with Pro instead of Tyr in position 16. The active site sequence of T4 thioredoxin has also been changed to Cys-Pro-Tyr-Cys to mimic that of glutaredoxins. This change does not markedly alter the reaction rate of the mutant protein with T4 ribonucleotide reductase or E. coli thioredoxin reductase, but the redox potential is lower for this mutant protein than for wild-type T4 thioredoxin.  相似文献   

15.
16.
R plasmid dihydrofolate reductase with a dimeric subunit structure   总被引:5,自引:0,他引:5  
Dihydrofolate reductase specified by plasmid R483 from a trimethoprim-resistant strain of Escherichia coli has been purified 2,000-fold to homogeneity using dye-ligand chromatography, gel filtration, and polyacrylamide gel electrophoresis. The protein migrated as a single band on nondenaturing polyacrylamide gel electrophoresis and had a specific activity of 250 mumol/mg min(-1). The molecular weight was estimated to be 32,000 by gel filtration and 39,000 by Ferguson analysis of polyacrylamide gel electrophoresis. When subjected to electrophoresis in the presence of sodium dodecyl sulfate, the protein migrated as a single 19,000-molecular weight species, a fact that suggests that the native enzyme is a dimer of similar or identical subunits. Antibody specific for R483-encoded dihydrofolate reductase did not cross-react with dihydrofolate reductase encoded by plasmid R67, T4 phage, E. coli RT500, or mouse L1210 leukemia cells. The amino acid sequence of the first 34 NH2-terminal residues suggests that the R483 plasmid dihydrofolate reductase is more closely related to the chromosomal dihydrofolate reductase than is the enzyme coded by plasmid R67.  相似文献   

17.
A substantially improved purification of Escherichia coli NADH-dependent nitrite reductase was obtained by purifying it in presence of 1 mM-NO2- and 10 microM-FAD. The enzyme was obtained in 20% yield with a maximum specific activity of 1.04 kat . kg-1: more than 95% of this sample subjected to sodium dodecyl sulphate/polyacrylamide-gel electrophoresis migrated as a single band of protein. This highly active enzyme contained one non-covalently bound FAD molecule, and, probably, 5 Fe atoms and 4 acid-labile S atoms per subunit. No FMN, covalently bound flavin or Mo was detected. The spectrum of the enzyme shows absorption maxima at 386, 455, 530 and about 575 nm with a shoulder at 480--490 nm. The Soret-band/alpha-band absorbance ratio is about 4:1. These spectral features are characteristic of sirohaem, apart from the maximum at 455nm, which is attributed to flavin. The enzyme also catalyses the NADH-dependent reduction of horse heart cytochrome c, 2,6-dichlorophenol-indophenol and K3Fe(CN)6. The presence of sirohaem in E. coli nitrite reductase explains the apparent identity of the cysG and nirB gene of E. coli and inability of hemA mutants to reduce nitrite.  相似文献   

18.
Thioredoxin, reduced either enzymatically with NADPH and NADP-thioredoxin reductase or chemically with dithiothreitol, reduced alpha-amylase and trypsin inhibitor proteins from several sources. Included were cystine-rich seed representatives from wheat (alpha-amylase inhibitors), soybean (Bowman-Birk trypsin inhibitor), and corn (kernel trypsin inhibitor). This system also reduced other trypsin inhibitors: the soybean Kunitz inhibitor, bovine lung aprotinin, and egg white ovoinhibitor and ovomucoid proteins. The ability of these proteins to undergo reduction by thioredoxin was determined by 1) a coupled enzyme activation assay with chloroplast NADP-malate dehydrogenase or fructose-1,6-bisphosphatase, 2) a dye reduction assay with 5',5'-dithiobis(2-nitrobenzoic acid), and 3) a direct reduction method based on the fluorescent probe, monobromobimane, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Reduction experiments with the seed proteins were carried out with thioredoxin from wheat germ (h-type) or Escherichia coli; the corresponding experiments with the animal trypsin inhibitors were carried out with thioredoxin from calf thymus or E. coli. In all cases, thioredoxin appeared to act catalytically; the reduced form of glutathione was without effect. When considered in conjunction with earlier results on purothionin (confirmed and extended in the current study), the new findings suggest that the NADP/thioredoxin system functions in the reduction of protein inhibitors of seeds and animal tissues. These results also raise the question of the occurrence of glutaredoxin in plants, as E. coli glutaredoxin was found to promote the reduction of some but not all of the proteins tested.  相似文献   

19.
Glutaredoxins are ubiquitous proteins that catalyze the reduction of disulfides via reduced glutathione (GSH). Escherichia coli has three glutaredoxins (Grx1, Grx2, and Grx3), all containing the classic dithiol active site CPYC. We report the cloning, expression, and characterization of a novel monothiol E. coli glutaredoxin, which we name glutaredoxin 4 (Grx4). The protein consists of 115 amino acids (12.7 kDa), has a monothiol (CGFS) potential active site and shows high sequence homology to the other monothiol glutaredoxins and especially to yeast Grx5. Experiments with gene knock-out techniques showed that the reading frame encoding Grx4 was essential. Grx4 was inactive as a GSH-disulfide oxidoreductase in a standard glutaredoxin assay with GSH and hydroxyethyl disulfide in a complete system with NADPH and glutathione reductase. An engineered CGFC active site mutant did not gain activity either. Grx4 in reduced form contained three thiols, and treatment with oxidized GSH resulted in glutathionylation and formation of a disulfide. Remarkably, this disulfide of Grx4 was a direct substrate for NADPH and E. coli thioredoxin reductase, whereas the mixed disulfide was reduced by Grx1. Reduced Grx4 showed the potential to transfer electrons to oxidized E. coli Grx1 and Grx3. Grx4 is highly abundant (750-2000 ng/mg of total soluble protein), as determined by a specific enzyme-link immunosorbent assay, and most likely regulated by guanosine 3',5'-tetraphosphate upon entry to stationary phase. Grx4 was highly elevated upon iron depletion, suggesting an iron-related function for the protein.  相似文献   

20.
Gao Y  Schofield OM  Leustek T 《Plant physiology》2000,124(3):1087-1096
5'-Adenylylsulfate (APS) reductase was characterized in diverse marine algae. A cDNA encoding APS reductase from Enteromorpha intestinalis (EAPR) was cloned by functional complementation of an Escherichia coli cysH mutant. The deduced amino acid sequence shows high homology with APS reductase (APR) from flowering plants. Based on the probable transit peptide cleavage site the mature protein is 45.7 kD. EAPR expressed as a His-tagged recombinant protein catalyzes reduced glutathione-dependent reduction of APS to sulfite, exhibiting a specific activity of approximately 40 micromol min(-1) mg protein(-1) and Michealis-Menten kinetic constants of approximately 1.4 mM for reduced glutathione and approximately 6.5 microM for APS. APR activity and expression were studied in relation to the production of 3-dimethylsulfoniopropionate (DMSP), a sulfonium compound produced by many marine algae. A diverse group of DMSP-producing species showed extremely high enzyme activity (up to 400 times that found in flowering plants). Antibodies raised against a conserved peptide of APR strongly cross-reacted with a protein of 45 kD in several chlorophytes but insignificantly with chromophytes. In the chlorophyte Tetraselmis sp., APR activity varies significantly during the culture cycle and does not follow the changes in cellular DMSP content. However, a positive correlation was found between cell-based APR activity and specific growth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号