首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Active roles of cell-cell interaction between melanocytes and neighboring keratinocytes for the regulation of melanocyte functions in the skin have been suggested. We examined substantial regulatory mechanisms of keratinocyte extracellular matrix (kECMs) for normal human melanocyte functions without direct cell-cell contact. We specially devised kECMs from proliferating or differentiating keratinocytes and further treated them with environmental stimulus ultraviolet B (UVB) for skin pigmentary system. Normal human melanocytes (NHM) were cultured on the various keratinocyte ECMs and initially the effects of the kECMs upon melanocyte morphology (dendrite formation and extension), growth, melanin production and expressions of pigmentation-associated protein (MEL-5) and proliferation-associated protein (proliferating cell nuclear antigen; PCNA/cyclin) were studied. Then we compared the effects of these cell-matrix interactions with those of direct melanocyte-keratinocyte, cell-cell contact in co-culture on melanocyte functions. Melanocytes cultured on any types of the kECMs that were tested significantly extended dendrites more than that on plastic cell culture dish without kECM (control). Melanocytes cultured on the kECM prepared from UVB irradiated differentiating keratinocytes resulted in 219% increase in the number of dendrites. The growth of melanocytes on kECMs was also stimulated up to 280% of control. The kECM produced by proliferating keratinocytes had a more significant effect on the growth than kECM from differentiating keratinocytes. This melanocyte growth stimulating effect was decreased with kECM from UVB treated differentiating keratinocytes. The melanin content per melanocyte was constant on any of the kECMs. Expression of pigmentation-associated protein detected by monoclonal antibody, MEL-5, was not changed on the kECM, while it was increased in melanocytes in co-culture with keratinocytes. Expression of PCNA/cyclin in melanocytes cultured on kECMs was generally downregulated on kECM and in co-culture compared to that in a control culture. We demonstrated that the kECMs play important roles in the melanocyte morphology and proliferation. These observations suggest that environmental (UVB) and physiological (Ca++) stimuli can regulate melanocyte functions through the keratinocyte extracellular matrix in vivo.  相似文献   

2.
3.
Vitiligo depigmentation is considered a consequence of either melanocyte disappearance or loss of functioning melanocytes in the involved areas. However, it has been reported that keratinocytes in involved vitiligo skin are damaged too. Based on this evidence, we evaluated the in vitro behaviour, in life span cultures, of involved and uninvolved vitiligo keratinocytes and their expression of proliferation, differentiation and senescence markers. An additional purpose was to investigate whether vitiligo keratinocytes from depigmented skin are able to sustain survival and growth of normal melanocytes (when added in co-culture experiments), as normal human keratinocytes manage to do. Our results demonstrate that almost all involved vitiligo keratinocytes have a shorter life span in vitro than the uninvolved cells and all of them do not maintain melanocytes in culture in a physiological ratio. Modification of proliferation and senescence marker expression also occurs. Indeed, we detected low initial expression levels of the senescence marker p16 in involved vitiligo keratinocytes, despite their shorter in vitro life span, and increased expression of proliferating cell nuclear antigen and p53. This preliminary analysis of a small number of in vitro cultured vitiligo keratinocytes suggests an impaired senescence process in lesional vitiligo keratinocytes and attempts to regulate it.  相似文献   

4.
Striking differences are observed in the melanogenic response of normal human melanocytes to UVA and UVB irradiation depending on culture conditions and the presence of keratinocytes. Exposure of melanocytes co‐cultured with keratinocytes to UVB irradiation triggered, already at low doses (5 mJ/cm2), an increase in melanin synthesis whereas in melanocyte mono‐cultures, UVB doses up to 50 mJ/cm2 had no melanogenic effect. Unlike UVB, UVA exposure caused the same melanogenic response in both mono‐ and co‐cultures. Removing certain keratinocyte growth factors from the co‐culture medium abolished the melanogenic response to UVB, but not to UVA exposure. When integrated into the basal layer of a reconstructed human epidermis, human melanocytes similarly reacted to UVA and UVB irradiation as in vivo by increasing their production and transfer of melanin to the neighboring keratinocytes which resulted in a noticeable tanning of the reconstructed epidermis. The presence of a dense stratum corneum, known to scatter and absorb UV light, is responsible for higher minimal UVB and UVA doses required to trigger a melanogenic response in the reconstructed epidermis compared to keratinocyte–melanocyte co‐cultures. Furthermore, an immediate tanning response was observed in the pigmented epidermis following UVA irradiation. From these results we conclude that: (i) keratinocytes play an important role in mediating UVB‐induced pigmentation, (ii) UVA‐induced pigmentation is the result of a rather direct effect on melanocytes and (iii) reconstructed pigmented epidermis is the most appropriate model to study UV‐induced pigmentation in vitro.  相似文献   

5.
Nerve growth factor (NGF) is critical to the development and maintenance of the peripheral nervous system, but its possible roles in other organ systems are less well characterized. We have recently shown that human epidermal melanocytes, pigment cells derived from the neural crest, express the NGF receptor (p75 NGF-R) in vitro (Peacocke, M., M. Yaar, C. P. Mansur, M. V. Chao, and B. A. Gilchrest. 1988. Proc. Natl. Acad. Sci. USA. 85:5282-5286). Using cultured human skin-derived cells we now demonstrate that the melanocyte p75 NGF-R is functional, in that NGF stimulation modulates melanocyte gene expression; that exposure to an NGF gradient is chemotactic for melanocytes and enhances their dendricity; and that keratinocytes, the dominant epidermal cell type, express NGF messenger RNA and hence are a possible local source of NGF for epidermal melanocytes in the skin. These combined data suggest a paracrine role for NGF in human epidermis.  相似文献   

6.
The strikingly even color of human skin is maintained by the uniform distribution of melanocytes among keratinocytes in the basal layer of the human epidermis. In this work, we investigated three possible hypotheses on the mechanism by which the melanocytes and keratinocytes organize themselves to generate this pattern. We let the melanocyte migration be aided by (1) negative chemotaxis due to a substance produced by the melanocytes themselves, or (2) positive chemotaxis due to a substance produced by keratinocytes lacking direct physical contact with a melanocyte, or (3) positive chemotaxis due to a substance produced by keratinocytes in a distance-to-melanocytes dependent manner. The three hypotheses were implemented in an agent-based computational model of cellular interactions in the basal layer of the human epidermis. We found that they generate mutually exclusive predictions that can be tested by existing experimental protocols. This model forms a basis for further understanding of the communication between melanocytes and other skin cells in skin homeostasis.  相似文献   

7.
The pheo/eumelanin ratio of cultured normal human melanocytes is distinct from the ratio observed for the same cells in vivo where they are in close contact with keratinocytes. To study the possible involvement of keratinocytes in the control of melanogenesis, we compared quantitatively and qualitatively the melanin production in melanocyte mono-cultures, in melanocyte-keratinocyte co-cultures and in pigmented reconstructed epidermis. Pheomelanin and eumelanin contents were assessed by high-performance liquid chromatography with electrochemical and fluorometric detection of their specific degradation products and revealed striking differences in the presence of keratinocytes. In the absence of keratinocytes (melanocyte mono-cultures), we observed a very limited eumelanin production and a very high pheomelanin synthesis. The pheo/eumelanin ratio in mono-cultures could be slightly influenced by changing the composition of the culture medium, however, the very strong imbalance in favor of pheomelanin remained unchanged. An induction of eumelanin synthesis accompanied by an important reduction of pheomelanin formation was only observed in the presence of keratinocytes. The pheo/eumelanin ratio in melanocyte mono-culture dropped from 1043 down to about 25 in the presence of keratinocytes (co-cultures). The same observations were made when the melanocytes were integrated into a reconstructed human epidermis. Interestingly, under co-culture conditions resulting in only a partial contact between melanocytes and keratinocytes, the reduction of the pheo/eumelanin ratio were less pronounced. From these results we conclude that keratinocytes play an important role in the melanin production, affecting the melanogenic pathways.  相似文献   

8.
A pilot study for grafting of patients with vitiligo using cultured epithelial autografts containing melanocytes gave disappointing clinical results, with pigmentation achieved in only one out of five patients. Irrespective of the fate of melanocytes grafted back onto the patients, we experienced problems in identifying melanocytes within these well-integrated keratinocyte sheets. This led us to explore the fate of these cells within these sheets in vitro and to seek to improve their number and function within the sheets. We report that the introduction of a fibroblast feeder layer can improve melanocyte number within melanocyte/keratinocyte co-cultures initially, but at very high keratinocyte density, there is a marked loss of melanocytes (as detected by staining for S100). Additionally, we found that keratinocytes not only down-regulate melanocyte number, but also pigmentary function; thus, it was possible to identify melanocytes that were S100 positive but tyrosinase-related protein-1 (TRP-1) negative in confluent well-integrated keratinocyte sheets. In summary, our data suggest that keratinocytes at high density initially suppress melanocyte pigmentation (as evidenced by a lack of TRP-1 expression) and then cause a physical loss of melanocytes. The introduction of a fibroblast feeder layer can help maintain melanocyte number while keratinocytes are subconfluent, but fails to oppose the inhibitory influence of the keratinocytes on melanocyte TRP-1 expression.  相似文献   

9.
10.
A pilot study for grafting of patients with vitiligo using cultured epithelial autografts containing melanocytes gave disappointing clinical results, with pigmentation achieved in only one out of five patients. Irrespective of the fate of melanocytes grafted back onto the patients, we experienced problems in identifying melanocytes within these well‐integrated keratinocyte sheets. This led us to explore the fate of these cells within these sheets in vitro and to seek to improve their number and function within the sheets. We report that the introduction of a fibroblast feeder layer can improve melanocyte number within melanocyte/keratinocyte co‐cultures initially, but at very high keratinocyte density, there is a marked loss of melanocytes (as detected by staining for S100). Additionally, we found that keratinocytes not only down‐regulate melanocyte number, but also pigmentary function; thus, it was possible to identify melanocytes that were S100 positive but tyrosinase‐related protein‐1 (TRP‐1) negative in confluent well‐integrated keratinocyte sheets. In summary, our data suggest that keratinocytes at high density initially suppress melanocyte pigmentation (as evidenced by a lack of TRP‐1 expression) and then cause a physical loss of melanocytes. The introduction of a fibroblast feeder layer can help maintain melanocyte number while keratinocytes are subconfluent, but fails to oppose the inhibitory influence of the keratinocytes on melanocyte TRP‐1 expression.  相似文献   

11.
Hair follicles and sweat glands are recognized as reservoirs of melanocyte stem cells (MSCs). Unlike differentiated melanocytes, undifferentiated MSCs do not produce melanin. They serve as a source of differentiated melanocytes for the hair follicle and contribute to the interfollicular epidermis upon wounding, exposure to ultraviolet irradiation or in remission from vitiligo, where repigmentation often spreads outwards from the hair follicles. It is unknown whether these observations reflect the normal homoeostatic mechanism of melanocyte renewal or whether unperturbed interfollicular epidermis can maintain a melanocyte population that is independent of the skin's appendages. Here, we show that mouse tail skin lacking appendages does maintain a stable melanocyte number, including a low frequency of amelanotic melanocytes, into adult life. Furthermore, we show that actively cycling differentiated melanocytes are present in postnatal skin, indicating that amelanotic melanocytes are not uniquely relied on for melanocyte homoeostasis.  相似文献   

12.
13.
In serum-free primary culture of dissociated mouse epidermal cells, alpha-melanocyte stimulating hormone (alpha-MSH) and dibutyryl cyclic AMP (DBcAMP) induced the differentiation of melanocytes. Moreover, the proliferation of melanocytes was also induced in the dishes cultured with DBcAMP, but not with alpha-MSH. In order to clarify the role of keratinocytes in melanocyte proliferation and differentiation, pure cultures of keratinocytes were established in serum-free medium. Subconfluent primary keratinocytes were trypsinized and seeded into pure primary melanoblasts cultured with serum-free medium that did not contain alpha-MSH or DBcAMP. Melanoblasts were cultured with alpha-MSH or DBcAMP in the presence or absence of keratinocytes. alpha-MSH failed to induce melanocyte differentiation in the absence of keratinocytes. DBcAMP failed to induce melanocyte proliferation in the absence of keratinocytes, although it induced melanocyte differentiation even in the absence of keratinocytes. These results suggest that keratinocyte-derived factors are required not only for the induction of melanocyte differentiation by alpha-MSH but also for the induction of melanocyte proliferation by DBcAMP.  相似文献   

14.
The epidermis is the first line of defense against ultraviolet (UV) light from the sun. Keratinocytes and melanocytes respond to UV exposure by eliciting a tanning response dependent in part on paracrine signaling, but how keratinocyte:melanocyte communication is regulated during this response remains understudied. Here, we uncover a surprising new function for the keratinocyte‐specific cell–cell adhesion molecule desmoglein 1 (Dsg1) in regulating keratinocyte:melanocyte paracrine signaling to promote the tanning response in the absence of UV exposure. Melanocytes within Dsg1‐silenced human skin equivalents exhibited increased pigmentation and altered dendrite morphology, phenotypes which were confirmed in 2D culture using conditioned media from Dsg1‐silenced keratinocytes. Dsg1‐silenced keratinocytes increased melanocyte‐stimulating hormone precursor (Pomc) and cytokine mRNA. Melanocytes cultured in media conditioned by Dsg1‐silenced keratinocytes increased Mitf and Tyrp1 mRNA, TYRP1 protein, and melanin production and secretion. Melanocytes in Dsg1‐silenced skin equivalents mislocalized suprabasally, reminiscent of early melanoma pagetoid behavior. Together with our previous report that UV reduces Dsg1 expression, these data support a role for Dsg1 in controlling keratinocyte:melanocyte paracrine communication and raise the possibility that a Dsg1‐deficient niche contributes to pagetoid behavior, such as occurs in early melanoma development.  相似文献   

15.
The purpose of this study was to examine some of the factors that may be relevant to regulating pigmentation in the human eye, specifically whether choroidal and iridial melanocytes are sensitive to regulation by epithelial and stromal cells and alpha-melanocyte stimulating hormone (alpha-MSH). Human choroidal and iridial melanocytes were established in culture and co-cultured with epithelial cells and stromal cells derived both from skin and from eye in order to determine their influence on choroidal and iridial melanocyte dopa oxidase activity. In all cases, co-culture of melanocytes with either epithelial cells or fibroblasts led to an increase in dopa oxidase activity during 5 days of co-culture. The extent of the increase ranged from 60% (non-significant) to as much as 185% when both fibroblasts and keratinocytes were present. The optimal ratio of fibroblasts to melanocytes was 1:10 (for dermal fibroblasts) or 1:2 (for iridial fibroblasts) and 1:1 for all epithelial cells to melanocytes. Both choroidal (three out of three cultures) and iridial (two out of three cultures) melanocytes showed increases in dopa oxidase activity to alpha-MSH when cultured in Green's media but the same cells cultured in MCDB153 were unresponsive to alpha-MSH. These in vitro studies suggest that ocular melanocytes have the capacity to be influenced by adjacent epithelial and stromal cells with respect to pigmentation.  相似文献   

16.
In mammalian skin, melanocyte proliferation and melanogenesis can be stimulated by keratinocytes, fibroblasts and other regulatory factors. To determine whether hydroxybenzyl alcohols (HBAs) show more inhibitory in melanocytes cultured alone or in melanocytes co-cultured with keratinocytes, we developed a murine melanocyte–keratinocyte co-culture model to investigate the pigmentation regulators in company with other melanogenic inhibitors and stimulators. It was found that the effects of HBAs and melanogenic factors were more evident in melanocytes co-cultured with keratinocytes. Keratinocytes may play a synergistic role in melanocyte melanogenesis and influence the pigment production. The tests in the co-culture model also imply that the inhibitory effects of HBAs on melanogenesis are due to the direct inhibition of melanosomal tyrosinase activity. HBAs showed a low cytotoxicity. The eventual results proved that HBAs are promising and safe agents for skin whitening in melanocyte alone and in co-culture systems. The co-culture model provides a more physiologically realistic condition to study the interaction between melanocytes and keratinocytes, which enables a reliable screening system for depigmenting compounds.  相似文献   

17.
18.
In mammalian skin, melanocyte proliferation and melanogenesis can be stimulated by keratinocytes, fibroblasts and other regulatory factors. To determine whether hydroxybenzyl alcohols (HBAs) show more inhibitory in melanocytes cultured alone or in melanocytes co-cultured with keratinocytes, we developed a murine melanocyte-keratinocyte co-culture model to investigate the pigmentation regulators in company with other melanogenic inhibitors and stimulators. It was found that the effects of HBAs and melanogenic factors were more evident in melanocytes co-cultured with keratinocytes. Keratinocytes may play a synergistic role in melanocyte melanogenesis and influence the pigment production. The tests in the co-culture model also imply that the inhibitory effects of HBAs on melanogenesis are due to the direct inhibition of melanosomal tyrosinase activity. HBAs showed a low cytotoxicity. The eventual results proved that HBAs are promising and safe agents for skin whitening in melanocyte alone and in co-culture systems. The co-culture model provides a more physiologically realistic condition to study the interaction between melanocytes and keratinocytes, which enables a reliable screening system for depigmenting compounds.  相似文献   

19.
Melanocytes characterized by the activities of tyrosinase, tyrosinase‐related protein (TRP)‐1 and TRP‐2 as well as by melanosomes and dendrites are located mainly in the epidermis, dermis and hair bulb of the mammalian skin. Melanocytes differentiate from melanoblasts, undifferentiated precursors, derived from embryonic neural crest cells. Because hair bulb melanocytes are derived from epidermal melanoblasts and melanocytes, the mechanism of the regulation of the proliferation and differentiation of epidermal melanocytes should be clarified. The regulation by the tissue environment, especially by keratinocytes is indispensable in addition to the regulation by genetic factors in melanocytes. Recent advances in the techniques of tissue culture and biochemistry have enabled us to clarify factors derived from keratinocytes. Alpha‐melanocyte‐stimulating hormone, adrenocorticotrophic hormone, basic fibroblast growth factor, nerve growth factor, endothelins, granulocyte‐macrophage colony‐stimulating factor, steel factor, leukemia inhibitory factor and hepatocyte growth factor have been suggested to be the keratinocyte‐derived factors and to regulate the proliferation and/or differentiation of mammalian epidermal melanocytes. Numerous factors may be produced in and released from keratinocytes and be involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes through receptor‐mediated signaling pathways.  相似文献   

20.
Melanocytes are the melanin-producing cells by melanogenesis, and the pigment melanin is primarily responsible for the color of skin. These cells contain dendrites that are in close contact with neighboring keratinocytes. Keratinocytes produce and secrete factors that regulate the proliferation and melanogenesis of melanocytes in vitro. Therefore, adopting only melanocyte pure culture may not clearly reflect the skin physiology in vivo. In this study, we applied a two-culture model using melanocytes and keratinocytes from human skin, such as melanocyte pure culture and melanocyte co-culture with keratinocyte. And then, there was compared the responses of melanocytes under different culture conditions (treatment with arbutin, MSH-α and UV-B irradiation). The results show that there was no significant difference in melanocyte proliferation and melanogenesis between arbutin and MSH-α treatment. However, the co-culture model was more stable than the pure culture model in terms of melanocyte proliferation and melanogenesis upon UV-B irradiation. Therefore, the co-culture model was superior to the pure culture as a useful method for the study of melanocytes and epidermal melanin unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号