首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insulin receptor of rat brain is coupled to tyrosine kinase activity   总被引:13,自引:0,他引:13  
Insulin receptors from rat brain were studied for receptor-associated tyrosine kinase activity. In solubilized, lectin-purified receptor preparations, insulin stimulated the phosphorylation of the beta subunit of its receptor as well as of exogenous substrates. Phosphoamino acid analysis of casein phosphorylated by these preparations revealed that 32P incorporation occurred predominantly on tyrosine residues. Receptor and casein phosphorylations were specific for insulin and analogues that also bind to the insulin receptor. The insulin dose response for phosphorylation of brain receptor resembled that reported for the purified insulin receptor from human placenta (Kasuga, M., Fujita-Yamaguchi, Y., Blithe, D.L., and Kahn, C.R. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 2137-2141), suggesting similar insulin sensitivity and coupling of the brain receptor kinase. Four polyclonal antisera to the insulin receptor were able to bind and immunoprecipitate the brain receptor; however, only two antisera activated the receptor-associated kinase. Thus, the brain insulin receptor, like the well studied non-neural receptor, is coupled to tyrosine kinase activity, making regulation of cellular events by insulin in neural tissue possible.  相似文献   

2.
Trypsin treatment of a partially purified insulin receptor preparation from rat adipocytes stimulated the phosphorylation of 90,000- and 72,000-Da polypeptides immunoprecipitated by anti-insulin receptor antibody. The phosphorylation of tyrosine residues alone was observed in both polypeptides. Trypsin concentrations which stimulated insulin receptor phosphorylation were the same as those previously shown to activate rat adipocyte glycogen synthase. Trypsin treatment of the insulin receptor fraction also stimulated the phosphorylation of an exogenous substrate of tyrosine kinase similarly to insulin treatment. Trypsin treatment of a highly purified insulin receptor from human placenta also activated the phosphorylation of the receptor-derived peptides. These results suggest that the insulin-stimulated protein kinase, a component of the insulin receptor, was activated by tryptic digestion to phosphorylate polypeptides derived from the insulin receptor itself. Thus, it is suggested that stimulation by trypsin of phosphorylation of the insulin receptor may be related to the insulin-like metabolic actions of trypsin observed in rat adipocytes.  相似文献   

3.
The beta-subunit of the insulin receptor contains a tyrosine-specific protein kinase. Insulin binding activates this kinase and causes phosphorylation of the beta-subunit of the insulin receptor. It is believed that phosphorylation of other proteins might transmit the insulin signal from the receptor to the cell. In the present study we used a polyclonal anti-phosphotyrosine antibody to detect other proteins that become tyrosine phosphorylated upon insulin stimulation. Glycoproteins from human placenta membranes were enriched by wheat germ agglutinin chromatography and phosphorylation was studied with [gamma-32P]ATP and insulin in vitro. Phosphorylated proteins were immunoprecipitated by antibodies against the insulin receptor and by serum containing the anti-phosphotyrosine antibody. Beside the insulin-stimulated phosphorylation of the 95 kDa beta-subunit of the insulin receptor, an insulin-stimulated phosphorylation of a 180 kDa protein was found. The phosphorylation of both proteins occurred only on tyrosine residues. Insulin increased 32P incorporation into the 180 kDa band 2.7-fold (S.E.M. +/- 0.3, n = 5). The 180 kDa protein was not precipitated by antibodies against the insulin receptor. H.p.l.c. chromatograms of tryptic fragments of the phosphorylated 180 kDa protein and of the beta-subunit of the insulin receptor revealed different patterns for both proteins. Insulin-stimulated phosphorylation of the 180 kDa protein was also detectable in unfractionated detergent-solubilized membranes. The phosphorylation of the 180 kDa protein was stimulated by insulin with the same dose-response curve as the phosphorylation of the beta-subunit, suggesting that this protein might be another endogenous substrate of the insulin receptor kinase.  相似文献   

4.
We have reported previously that phenylarsine oxide (PAO) blocks insulin-stimulated glucose transport in 3T3-L1 adipocytes (Frost, S. C., and Lane, M. D. (1985) J. Biol. Chem. 260, 2646-2652). As shown in the present study, the locus of inhibition is post-receptor. Insulin stimulated the extent of receptor autophosphorylation in solution and in the intact cell by approximately 4-fold. PAO had no effect on this activity. Using reduced and carboxamidomethylated lysozyme as a substrate for the tyrosine-specific receptor, insulin stimulated the rate of receptor kinase-catalyzed substrate phosphorylation by 2-fold; PAO had no effect on this stimulation. However, the insulin-stimulated, serine-specific phosphorylation of two endogenous phosphoproteins (pp24 and pp240) in the intact cell was blocked by 25 microM PAO. These complementary in situ and in vitro studies demonstrate that the inhibition by PAO must be distal to the insulin receptor's protein tyrosine kinase activity.  相似文献   

5.
Insulin receptor kinase activity was measured in partially purified receptor preparations from livers of rats fed a standard diet or subjected to either prolonged fasting or a high carbohydrate (CHO) diet, conditions known to decrease (fasting) and increase (CHO) insulin action. Basal and insulin-stimulated phosphorylation of the beta subunit of the insulin receptor was comparable in all groups with a half-maximal effect at approximately 2.0 ng/ml free insulin and a 10-12-fold maximal effect. The kinase activity of insulin receptors from the three groups was further examined using the synthetic polypeptide Glu 4:Tyr 1. Basal and insulin-stimulated rates of Glu 4:Tyr 1 phosphorylation were highest in the CHO-fed and lowest in the fasted group. The magnitude of these differences was the same in the absence or presence of insulin; thus, the alterations in receptor kinase activity in fasting and CHO feeding were entirely expressed in the basal rate of peptide phosphorylation. Antireceptor antibody immunoprecipitated 70-80% of the basal Glu 4:Tyr 1 kinase activity in each group; the remaining 20-30% showed minor group differences when normalized for the amount of protein present in the receptor preparations. These results indicate that the group differences in basal kinase were intrinsic to the insulin receptor. Insulin increased the Vmax of Glu 4:Tyr 1 phosphorylation by approximately 30 fmol of phosphorus/fmol of binding activity/30 min in all three groups; however, the absolute Vmax was highest in the CHO-fed and lowest in the fasted group. The Km of Glu 4:Tyr 1 phosphorylation was unaffected by insulin and was comparable (approximately 0.25 mg/ml) in the three groups. These findings indicate that fasting and CHO feeding produce changes in receptor kinase activity which are regulated by mechanisms independent of insulin and that the alterations show substrate specificity so that differences are detected with one substrate (Glu 4:Tyr 1) but not another (the beta subunit).  相似文献   

6.
Inflammation contributes to insulin resistance in diabetes and obesity. Mouse Pelle-like kinase (mPLK, homolog of human IL-1 receptor-associated kinase (IRAK)) participates in inflammatory signaling. We evaluated IRS-1 as a novel substrate for mPLK that may contribute to linking inflammation with insulin resistance. Wild-type mPLK, but not a kinase-inactive mutant (mPLK-KD), directly phosphorylated full-length IRS-1 in vitro. This in vitro phosphorylation was increased when mPLK was immunoprecipitated from tumor necrosis factor (TNF)-alpha-treated cells. In NIH-3T3(IR) cells, wild-type mPLK (but not mPLK-KD) co-immunoprecipitated with IRS-1. This association was increased by treatment of cells with TNF-alpha. Using mass spectrometry, we identified Ser(24) in the pleckstrin homology (PH) domain of IRS-1 as a specific phosphorylation site for mPLK. IRS-1 mutants S24D or S24E (mimicking phosphorylation at Ser(24)) had impaired ability to associate with insulin receptors resulting in diminished tyrosine phosphorylation of IRS-1 and impaired ability of IRS-1 to bind and activate PI-3 kinase in response to insulin. IRS-1-S24D also had an impaired ability to mediate insulin-stimulated translocation of GLUT4 in rat adipose cells. Importantly, endogenous mPLK/IRAK was activated in response to TNF-alpha or interleukin 1 treatment of primary adipose cells. In addition, using a phospho-specific antibody against IRS-1 phosphorylated at Ser(24), we found that interleukin-1 or TNF-alpha treatment of Fao cells stimulated increased phosphorylation of endogenous IRS-1 at Ser(24). We conclude that IRS-1 is a novel physiological substrate for mPLK. TNF-alpha-regulated phosphorylation at Ser(24) in the pleckstrin homology domain of IRS-1 by mPLK/IRAK represents an additional mechanism for cross-talk between inflammatory signaling and insulin signaling that may contribute to metabolic insulin resistance.  相似文献   

7.
Cell signalling for insulin may include insulin receptor tyrosine kinase catalysing the phosphorylation of one or more cell proteins. Since temporally the insulin receptor will encounter plasma membrane protein first, we have studied the in vitro phosphorylation of purified plasma membrane preparations. Two proteins were immunoprecipitated with anti-phosphotyrosine antibody from rat liver, muscle, heart and brain membranes and from human placenta membranes: the insulin receptor (detected as a phosphorylated-β-subunit) and a 180,000 molecular weight protein (pp180). pp180 is a monomeric glycoprotein that in the absence of dithiothreitol migrated in denaturing gels like a 150,000 molecular weight protein. pp180 was a substrate for the insulin receptor: (i) receptor and pp180 phosphorylation followed a similar insulin dose-response, although fold-stimulation of autophosphorylation was greater; and (ii) removal of insulin receptors with monoclonal antibodies prevented subsequent pp180 phosphorylation. Insulin-activated receptors increased the extent, but not the rate, of pp180 phosphorylation; the increased phosphate was incorporated into tyrosine and appeared to do so in three or four of pp180's 12 tryptic phosphopeptides. Some data suggest that pp180 is the same protein in each of the tested tissues. The occurrence of pp180, an insulin receptor substrate, in plasma membranes of several insulin responsive tissues suggests that it has a role in insulin signalling.  相似文献   

8.
We have studied the phosphatidylinositol 3-kinase (PtdIns 3-kinase) in insulin-stimulated Chinese hamster ovary (CHO) cells expressing normal (CHO/IR) and mutant human insulin receptors. Insulin stimulation of CHO/IR cells results in an increase in PtdIns 3-kinase activity associated with anti-phosphotyrosine (alpha PY) immunoprecipitates, which has been previously shown to correlate with the in vivo production of PtdIns(3,4)P2, and PtdIns(3,4,5)P3 (Ruderman, N., Kapeller, R., White, M.F., and Cantley, L.C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1411-1415). Stimulation was maximal within 1 min and showed a dose response identical to that of insulin receptor autophosphorylation. The PtdIns 3-kinase also associated with the insulin receptor in an insulin-stimulated manner, as approximately 50% of the total alpha PY-precipitable activity could be specifically immunoprecipitated with anti-insulin receptor antibody. Mutant insulin receptors displayed variable ability to stimulate the PtdIns 3-kinase, but in all cases the presence of PtdIns 3-kinase in alpha PY immunoprecipitates correlated closely with the tyrosyl phosphorylation of the endogenous substrate pp185. In CHO cells expressing a kinase-deficient mutant (IRA1018), there was no observable insulin stimulation of PtdIns 3-kinase activity in alpha PY immunoprecipitates and no tyrosyl phosphorylation of pp185. Substitution of Tyr1146 in the insulin receptor regulatory region with phenylalanine partially impaired receptor autophosphorylation, pp185 phosphorylation, and insulin-stimulated increases in alpha PY-precipitable PtdIns 3-kinase activity. In contrast, a deletion mutant lacking 12 amino acids from the juxtamembrane region (IR delta 960) displayed normal in vivo autophosphorylation but failed to stimulate the PtdIns 3-kinase or phosphorylate pp185. Finally, a mutant receptor from which the C-terminal 43 amino acids had been deleted (IR delta CT) exhibited normal insulin-stimulated autophosphorylation, pp185 phosphorylation, and stimulation of the PtdIns 3-kinase activity in alpha PY immunoprecipitates. These data suggest that the PtdIns 3-kinase is itself a substrate of the insulin receptor kinase or associates preferentially with a substrate. A comparison of the biological activities of the mutant receptors with their activation of the PtdIns 3-kinase furthermore suggests that the PtdIns 3-kinase may be linked to insulin's ability to regulate DNA synthesis and cell growth.  相似文献   

9.
Concanavalin A (ConA) stimulated the phosphorylation of the beta-subunit of the insulin receptor and an Mr-185,000 protein on serine and tyrosine residues in intact H-35 rat hepatoma cells. This Mr-185,000 protein whose phosphorylation was stimulated by ConA was identical to pp185, a protein reported previously to be a putative endogenous substrate for the insulin receptor tyrosine kinase in rat hepatoma cells. In Chinese hamster ovary (CHO) cells transfected with cDNA of the human insulin receptor, tyrosine-phosphorylation of pp185 was strongly enhanced by ConA compared with the controls, suggesting that the induction of tyrosine-phosphorylation of pp185 was due to stimulation of the insulin receptor kinase by ConA. Moreover, monovalent ConA only slightly induced the tyrosine-phosphorylation of pp185, which was enhanced by the addition of anti-ConA IgG, suggesting that ConA stimulated the insulin receptor kinase mainly by the receptor cross-linking or aggregation in intact cells. These data suggest that the insulin-mimetic action of ConA is related to the autophosphorylation and activation of the insulin receptor tyrosine kinase, as well as the subsequent phosphorylation of pp185 in intact cells.  相似文献   

10.
Lizard insulin receptors are evolutionarily highly conserved. Wheat germ agglutinin-purified brain membranes demonstrate the presence of an endogenous substrate (pp 105) for both the insulin and insulin-like growth factor-I receptors. Both insulin and I-insulin-like growth factor-I stimulate the phosphorylation of this endogenous substrate in a dose-dependent manner. Following insulin-stimulated autophosphorylation of the beta subunit, there is a lag period of about 5 min prior to observable phosphorylation of the endogenous substrate. Phosphoamino acid analysis of both the beta subunit as well as pp 105 reveal primarily phosphotyrosine in both the basal as well as the stimulated state.  相似文献   

11.
The insulin-stimulated receptor kinase is a tyrosine-specific casein kinase   总被引:3,自引:0,他引:3  
Insulin stimulates a kinase that phosphorylates tyrosines in the insulin receptor; this kinase is tightly associated with the insulin receptor itself. We now show that the insulin-stimulated casein kinase, present in solubilized, lectin-purified receptor preparations from rat liver, is indistinguishable from the insulin receptor kinase. As with phosphorylation of the insulin receptor, insulin selectively enhanced by 2-3-fold the phosphorylation of tyrosines in casein. The insulin-stimulated activities of both kinases were inactivated at 37 degrees C with the same t0.5 of 5 min and were identically affected by alkylating agents. Both receptor and casein kinase activities were specifically coprecipitated by anti-receptor antibodies or by insulin and anti-insulin antibodies. When the latter type of immune complexes were incubated with an excess of insulin, both kinase activities were quantitatively recovered. We therefore conclude that insulin-stimulated receptor and casein phosphorylations are probably catalyzed by a single enzyme which is tightly associated with the receptor itself. Now, by replacing casein for receptor as substrate, it is possible to measure the enzymatic activity of this receptor-related kinase itself, i.e. independent of the receptor as substrate. Detection of this activity is improved in the presence of certain alkylating agents. Use of artificial substrates (in combination with alkylating agents) is particularly important to dissect the functional components of the receptor complex, to study mechanisms of enzyme regulation and especially in situations where the available receptor for study is limited, e.g. fresh or cultured cells from patients.  相似文献   

12.
Tyrosyl phosphorylation is implicated in the mechanism of insulin action. Mutation of the beta-subunit of the insulin receptor by substitution of tyrosyl residue 960 with phenylalanine had no effect on insulin-stimulated autophosphorylation or phosphotransferase activity of the purified receptor. However, unlike the normal receptor, this mutant was not biologically active in Chinese hamster ovary cells. Furthermore, insulin-stimulated tyrosyl phosphorylation of at least one endogenous substrate (pp185) was increased significantly in cells expressing the normal receptor but was barely detected in cells expressing the mutant. Therefore, beta-subunit autophosphorylation was not sufficient for the insulin response, and a region of the insulin receptor around Tyr-960 may facilitate phosphorylation of cellular substrates required for transmission of the insulin signal.  相似文献   

13.
The tyrosine kinase activity of the insulin receptor derived from rat adipocyte plasma membranes was examined during aging. In the absence of insulin, autophosphorylation and histone H2B phosphorylation activities, measured with equal numbers of insulin receptors, were comparable among 3- and 24-month-old rats. In contrast, insulin-stimulated kinase activity was significantly reduced in the old animals. We have also found that the insulin dependent phosphorylation of a putative endogenous substrate of 60 kDa was drastically reduced in old animals. These results suggest that the decrease in kinase activity in old rats could be related with the insulin resistance of aging.  相似文献   

14.
Insulin has pleiotropic effects on the regulation of cell physiology through binding to its receptor. The wide variety of tyrosine phosphorylation motifs of insulin receptor substrate 1 (IRS-1), a substrate for the activated insulin receptor tyrosine kinase, may account for the multiple functions of insulin. Recent studies have shown that activation of the insulin receptor leads to the regulation of focal adhesion proteins, such as a dephosphorylation of focal adhesion kinase (pp125FAK). We show here that C-terminal Src kinase (Csk), which phosphorylates C-terminal tyrosine residues of Src family protein tyrosine kinases and suppresses their kinase activities, is involved in this insulin-stimulated dephosphorylation of focal adhesion proteins. We demonstrated that the overexpression of Csk enhanced and prolonged the insulin-induced dephosphorylation of pp125FAK. Another focal adhesion protein, paxillin, was also dephosphorylated upon insulin stimulation, and a kinase-negative mutant of Csk was able to inhibit the insulin-induced dephosphorylation of pp125FAK and paxillin. Although we have shown that the Csk Src homology 2 domain can bind to several tyrosine-phosphorylated proteins, including pp125FAK and paxillin, a majority of protein which bound to Csk was IRS-1 when cells were stimulated by insulin. Our data also indicated that tyrosine phosphorylation levels of IRS-1 appear to be paralleled by the dephosphorylation of the focal adhesion proteins. We therefore propose that the kinase activity of Csk, through the insulin-induced complex formation of Csk with IRS-1, is involved in insulin's regulation of the phosphorylation levels of the focal adhesion proteins, possibly through inactivation of the kinase activity of c-Src family kinases.  相似文献   

15.
Using the insulin-glucose clamp technique, we have previously shown that an increased sensitivity to insulin in vivo is a characteristic of the liver in rats with non-insulin-dependent diabetes induced by neonatal streptozotocin administration. We have thus studied the properties of liver insulin receptor in that model. 125I-porcine insulin binding was found normal both in isolated plasma membranes and in solubilized, wheat germ agglutinin purified receptors prepared from livers of rats with non-insulin-dependent diabetes, when compared to controls. Basal and insulin-stimulated insulin receptor kinase activities were also found normal for both the autophosphorylation of the beta subunit of the insulin receptor and the phosphorylation of the artificial substrate poly (Glu-Tyr) 4:1. Thus, in that model of chronic insulin deficiency and mild hyperglycemia: 1) liver insulin receptors are not up-regulated; 2) tyrosine kinase activity remains unaffected. This last observation supports the hypothesis that the increased insulin effect in the liver of rats with non-insulin-dependent diabetes is probably distal to the insulin receptor kinase.  相似文献   

16.
We have recently characterized a mutant insulin receptor (Y/F2) in which the two tyrosines in the carboxyl terminus (Tyr1316, Tyr1322) were mutated to phenylalanine. Compared with wild type receptors, the Y/F2 receptor exhibited markedly enhanced sensitivity to insulin-stimulated DNA synthesis with normal insulin-stimulated glucose uptake (Takata, Y., Webster, N. J. G., and Olefsky, J. M. (1991) J. Biol. Chem. 266, 9135-9139). In this paper, we present further evidence for the divergence of the metabolic and mitogenic signaling pathways utilized by the insulin receptor. The mutant receptor showed normal sensitivity and responsiveness for insulin-stimulated glucose incorporation into glycogen. The insulin sensitivity for phosphorylation of two substrates (pp180 and pp220) was the same in both Y/F2 cells and HIRc cells. Phosphotyrosine content, however, was greater in Y/F2 cells than in HIRc cells, especially in the basal state. Insulin stimulated S6 kinase activity 2-6-fold, with an ED50 of -10 nM in Rat 1 cells and 0.5 nM in HIRc cells. The sensitivity to insulin was enhanced in Y/F2 cells with an ED50 of 0.1 nM. These effects were insulin-specific, since insulin-like growth factor (IGF)-I-stimulated mitogenesis was normal. In summary: 1) Y/F2 receptors exhibit normal metabolic and enhanced mitogenic signaling; 2) the enhanced mitogenic signaling is specific for the insulin receptor in the Y/F2 cells, since IGF-I-stimulated mitogenesis is normal; 3) Y/F2 cells display increased endogenous substrate phosphorylation and augmented insulin-stimulated S6 kinase activity placing these responses among insulin's mitogenic effects; and 4) these results are consistent with the concept that the COOH-terminal tyrosine residues of the insulin receptor are normally inhibitory to mitogenic signaling.  相似文献   

17.
We have shown previously that experimental modifications of the cellular lipid composition of an insulin-sensitive rat hepatoma cell line (Zajdela Hepatoma Culture, ZHC) affect both binding and biological actions of insulin. Discrepancies between insulin binding and actions implied a postbinding defect, responsible for the observed insulin resistance in lipid-treated cells. To elucidate the mechanism for this defect, we have studied insulin binding and insulin receptor kinase activity in partially purified receptor preparations from ZHC cells grown either in normal medium or in medium supplemented with linoleic acid or 25-hydroxycholesterol. Insulin binding to the lectin-purified insulin receptor showed only a small alteration in receptor affinity for the preparations from lipid-treated cells. Insulin-stimulated autophosphorylation of the beta-subunit of the insulin receptor, as well as insulin-induced phosphorylation of the artificial substrate poly(Glu,Tyr)4:1, was significantly decreased in the preparations from lipid-modified cells. Although differences in basal levels were observed, the magnitude of the insulin-stimulated kinase activity was significantly decreased in receptor preparations from lipid-treated cells. These findings indicate that experimental modification of the lipids of cultured hepatoma cells can produce in insulin receptor kinase activity changes that are proportional to the reduced insulin action observed in these cells.  相似文献   

18.
We have studied a series of insulin receptor molecules in which the 3 tyrosine residues which undergo autophosphorylation in the kinase domain of the beta-subunit (Tyr1158, Tyr1162, and Tyr1163) were replaced individually, in pairs, or all together with phenylalanine or serine by in vitro mutagenesis. A single-Phe replacement at each of these three positions reduced insulin-stimulated autophosphorylation of solubilized receptor by 45-60% of that observed with wild-type receptor. The double-Phe replacements showed a 60-70% reduction, and substitution of all 3 tyrosine residues with Phe or Ser reduced insulin-stimulated tyrosine autophosphorylation by greater than 80%. Phosphopeptide mapping each mutant revealed that all remaining tyrosine autophosphorylation sites were phosphorylated normally following insulin stimulation, and no new sites appeared. The single-Phe mutants showed insulin-stimulated kinase activity toward a synthetic peptide substrate of 50-75% when compared with wild-type receptor kinase activity. Insulin-stimulated kinase activity was further reduced in the double-Phe mutants and barely detectable in the triple-Phe mutants. In contrast to the wild-type receptor, all of the mutant receptor kinases showed a significant reduction in activation following in vitro insulin-stimulated autophosphorylation. When studied in intact Chinese hamster ovary cells, insulin-stimulated receptor autophosphorylation and tyrosine phosphorylation of the cellular substrate pp185 in the single-Phe and double-Phe mutants was progressively lower with increased tyrosine replacement and did not exceed the basal levels in the triple-Phe mutants. However, all the mutant receptors, including the triple-Phe mutant, retained the ability to undergo insulin-stimulated Ser and Thr phosphorylation. Thus, full activation of the insulin receptor tyrosine kinase is dependent on insulin-stimulated Tris phosphorylation of the kinase domain, and the level of autophosphorylation in the kinase domain provides a mechanism for modulating insulin receptor kinase activity following insulin stimulation. By contrast, insulin stimulation of receptor phosphorylation on Ser and Thr residues by cellular serine/threonine kinases can occur despite markedly reduced tyrosine autophosphorylation.  相似文献   

19.
The role of specific tyrosine autophosphorylation sites in the human insulin receptor kinase domain (Tyr1158, Tyr1162, and Tyr1163) was analyzed using in vitro mutagenesis to replace tyrosine residues individually or in combination. Each of the three single-Phe, the three possible double-Phe a triple-Phe and a triple-Ser mutant receptors, stably expressed in Chinese hamster ovary cells, were compared with the wild-type receptor in their ability to mediate stimulation of receptor kinase activity, glycogen synthesis, and DNA synthesis by insulin or the human-specific anti-receptor monoclonal antibody 83-14. At a concentration of 0.1 nM insulin which produced approximately half-maximal responses with wild-type receptor, DNA synthesis and glycogen synthesis mediated by the three single-Phe mutants ranged from 52 to 88% and from 32 to 79% of the wild-type receptor, respectively. The corresponding figures for the double-Phe mutants averaged 15 and 6%, whereas the triple-mutants were unresponsive in both assays. The level of biological function approximately paralleled the insulin-stimulated tyrosine kinase activity in the intact cell as estimated by tyrosine phosphorylation of the insulin receptor and its endogenous substrate pp 185/IRS-1. Interestingly, all mutants showed a marked decrease in insulin-stimulated receptor internalization. Anti-receptor antibody stimulated receptor kinase activity and mimicked insulin action in these cells. In general, the impairment of the metabolic response was greater and impairment of the growth response was less when antibody was the stimulus. These experiments show that the level and specific sites of autophosphorylation are critical determinants of receptor function. The data are consistent with a requirement for the receptor tyrosine kinase either as an obligatory step or a modulator, in both metabolic and growth responses, and demonstrate the important role of the level of insulin receptor kinase domain autophosphorylation in regulating insulin sensitivity.  相似文献   

20.
The sphingomyelin derivative ceramide is a signaling molecule implicated in numerous physiological events. Recently published reports indicate that ceramide levels are elevated in insulin-responsive tissues of diabetic animals and that agents which trigger ceramide production inhibit insulin signaling. In the present series of studies, the short-chain ceramide analog C2-ceramide inhibited insulin-stimulated glucose transport by ~50% in 3T3-L1 adipocytes, with similar reductions in hormone-stimulated translocation of the insulin-responsive glucose transporter (GLUT4) and insulin-responsive aminopeptidase. C2-ceramide also inhibited phosphorylation and activation of Akt, a molecule proposed to mediate multiple insulin-stimulated metabolic events. C2-ceramide, at concentrations which antagonized activation of both glucose uptake and Akt, had no effect on the tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) or the amounts of p85 protein and phosphatidylinositol kinase activity that immunoprecipitated with anti-IRS-1 or antiphosphotyrosine antibodies. Moreover, C2-ceramide also inhibited stimulation of Akt by platelet-derived growth factor, an event that is IRS-1 independent. C2-ceramide did not inhibit insulin-stimulated phosphorylation of mitogen-activated protein kinase or pp70 S6-kinase, and it actually stimulated phosphorylation of the latter in the absence of insulin. Various pharmacological agents, including the immunosuppressant rapamycin, the protein synthesis inhibitor cycloheximide, and several protein kinase C inhibitors, were without effect on ceramide’s inhibition of Akt. These studies demonstrate ceramide’s capacity to inhibit activation of Akt and imply that this is a mechanism of antagonism of insulin-dependent physiological events, such as the peripheral activation of glucose transport and the suppression of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号