首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacteria are major human pathogens responsible for such serious and widespread diseases as tuberculosis and leprosy. Among the evolutionary adaptations essential for pathogenicity in mycobacteria is a complex carbohydrate-rich cell-wall structure that contains as a major immunomodulatory molecule the polysaccharide lipoarabinomannan (LAM). We report here crystal structures of three fragments from the non-reducing termini of LAM in complex with a murine antibody Fab fragment (CS-35Fab). These structures reveal for the first time the three-dimensional structures of key components of LAM and the molecular basis of LAM recognition at between 1.8- and 2.0-Å resolution. The antigen-binding site of CS-35Fab forms three binding pockets that show a high degree of complementarity to the reducing end, the branch point and one of the non-reducing ends of the Y-shaped hexasaccharide moiety found at most of the non-reducing termini of LAM. Structures of CS-35Fab bound to two additional tetrasaccharides confirm the general mode of binding seen in the hexasaccharide and indicate how different parts of LAM are recognized. Altogether, these structures provide a rational basis for understanding the overall architecture of LAM and identify the key elements of an epitope that may be exploited for the development of novel and more effective anti-mycobacterial vaccines. Moreover, this study represents the first high-resolution X-ray crystallographic investigation of oligofuranoside-protein recognition.  相似文献   

2.
Understanding the structural basis of recognition between antigen and antibody requires the structural comparison of free and complexed components. Previously, we have reported the crystal structure of the complex between Fab fragment of murine monoclonal antibody 2A8 (Fab2A8) and Plasmodium vivax P25 protein (Pvs25) at 3.2 Å resolution. We report here the crystallization and X-ray structure of native Fab2A8 at 4.0 Å resolution. The 2A8 antibody generated against Pvs25 prevents the formation of P. vivax oocysts in the mosquito, when assayed in membrane feeding experiment.Comparison of native Fab2A8 structure with antigen bound Fab2A8 structure indicates the significant conformational changes in CDR-H1 and CDR-H3 regions of VH domain and CDR-L3 region of VL domain of Fab2A8. Upon complex formation, the relative orientation between VL and VH domains of Fab2A8 is conserved, while significant differences are observed in elbow angles of heavy and light chains. The combing site residues of complexed Fab2A8 exhibited the reduced temperature factor compared to native Fab2A8, suggesting a loss of conformational entropy upon antigen binding.  相似文献   

3.
This communication describes SAXS data based global structures of tetravalent antibody CD4–IgG2 and its dimeric to pentameric complexes with gp120s. Comparison of models brought forth that while the two CD4s grafted on each arm remain tightly packed in the unliganded antibody, they enable binding of first two gp120s preferentially to the same Fab arm in an asymmetric manner. Retention of residues in the CD4–Fab linker earlier reasoned to enable bi-fold collapse of gp120-bound soluble CD4, and observed asymmetry of the (CD4–IgG2)/(gp120)2 complex suggest that encoded flexibility in CD4–Fab linker is a critical structure–function factor for this broad spectrum neutralizing antibody.  相似文献   

4.
The binding of pentaammineruthenium (III) to ribonuclease A and B both free and complexed with d(pA)4 has been examined in the crystalline state through the application of X-ray diffraction and difference Fourier techniques. In crystals of native RNase B, the reagent was observed to have many binding sites, some entirely electrostatic in nature and others consistent with coordination to histidine residues. The primary histidine in the latter case was 105 with 119 also partially substituted. In crystals of RNase A+d(pA)4 complex only a single, extremely strong site of substitution was observed, and this was 2.4 Å from the native position of the imidazole ring of histidine 105. Thus, the results of these X-ray diffraction studies appear to be quite consistent with the findings of earlier NMR studies and with the results obtained in crystals of the gene 5 DNA binding protein.  相似文献   

5.
The somatic mutations accumulated in variable and framework regions of antibodies produce structural changes that increase the affinity towards the antigen. This implies conformational and non covalent bonding changes at the paratope, as well as possible quaternary structure changes and rearrangements at the VH-VL interface. The consequences of the affinity maturation on the stability of the Fv domain were studied in a system composed of two closely related antibodies, F10.6.6 and D44.1, which recognize the same hen egg-white lysozyme (HEL) epitope. The mAb F10.6.6 has an affinity constant 700 times higher than D44.1, due to a higher surface complementarity to HEL. The structure of the free form of the Fab F10.6.6 presented here allows a comparative study of the conformational changes produced upon binding to antigen. By means of structural comparison, kinetics and thermodynamics of binding and stability studies on Fab and Fv fragments of both antibodies, we have determined that the affinity maturation process of anti-protein antibodies affects the shape of the combining site and the secondary structure content of the variable domain, stabilizes the VH-VL interaction, and consequently produces an increase of the Fv domain stability, improving the binding to antigen.  相似文献   

6.
The binding of the Fab fragment of monoclonal antibody NC10 to influenza virus N9 neuraminidase, isolated from tern and whale, was measured using an optical biosensor. Both neuraminidases, homotetramers of 190 kDa, were immobilized to avoid multivalent binding, and the binding of the monovalent NC10 Fab to immobilized neuraminidase was analyzed using the 1:1 Langmuir binding model. A contribution of mass transport to the kinetic constants was demonstrated at higher surface densities and low flow rates, and was minimized at low ligand densities and relatively high flow rates (up to 100 microl/min). Application of a global fitting algorithm to a 1:1 binding model incorporating a correction term for mass transport indicated that mass transport was minimized under appropriate experimental conditions; analysis of binding data with a mass transport component, using this model, yielded kinetic constants similar to those obtained with the 1:1 Langmuir binding model applied to binding data where mass transport had been minimized experimentally. The binding constant for binding of NC10 Fab to N9 neuraminidase from tern influenza virus (K(A) = 6.3 +/- 1.3 x 10(7) M(-1)) was about 15-fold higher than that for the NC10 Fab binding to N9 neuraminidase from whale influenza virus (K(A) = 4.3 +/- 0.7 x 10(6) M(-1)). This difference in binding affinity was mainly attributable to a 12-fold faster dissociation rate constant of the whale neuraminidase-NC10 Fab complex and may be due to either (i) the long-range structural effects caused by mutation of two residues distant from the binding epitope or (ii) differences in carbohydrate residues, attached to Asn(200), which form part of the binding epitope on both neuraminidases to which NC10 Fab binds.  相似文献   

7.
G DasGupta  E Reisler 《Biochemistry》1992,31(6):1836-1841
The binding of myosin subfragment 1 (S-1) to actin in the presence of ATP and the acto-S-1 ATPase activities of acto-S-1 complexes were determined at 5 degrees C under conditions of partial saturation of actin, up to 90%, by antibodies against the first seven N-terminal residues on actin. The antibodies [Fab(1-7)] inhibited strongly the acto-S-1 ATPase and the binding of S-1 to actin in the presence of ATP at low concentrations of S-1, up to 25 microM. Further increases in S-1 concentration resulted in a partial and cooperative recovery of both the binding of S-1 to actin and the acto-S-1 ATPase while causing only limited displacement of Fab(1-7) from actin. The extent to which the binding and the ATPase activity were recovered depended on the saturation of actin by Fab(1-7). The combined amounts of S-1 and Fab binding to actin suggested that the activation of the myosin ATPase activity was due to actin free of Fab. Examination of the acto-S-1 ATPase activities as a function of S-1 bound to actin at different levels of actin saturation by Fab(1-7) revealed that the antibodies inhibited the activation of the bound myosin. Thus, the binding of antibodies to the N-terminal segment of actin can act to inhibit both the binding of S-1 to actin in the presence of ATP and a catalytic step in ATP hydrolysis by actomyosin. The implications of these results to the regulation of actomyosin interaction are discussed.  相似文献   

8.
G DasGupta  E Reisler 《Biochemistry》1991,30(41):9961-9966
The binding of myosin subfragment 1 (S-1) to actin in the presence and absence of nucleotides was determined under conditions of partial saturation of actin, up to 80%, by Fab(1-7), the antibodies against the first seven N-terminal residues on actin. In the absence of nucleotides, the binding constant of S-1 to actin (2 x 10(7) M-1) was decreased by 1 order of magnitude by Fab(1-7). The binding of S-1 to actin caused only limited displacement of Fab, and between 30 and 50% of actin appeared to bind both proteins. In the presence of MgAMP.PNP, MgADP, and MgPPi and at low S-1 concentrations, the same antibodies caused a large decrease in the binding of S-1 to actin. However, the binding of S-1.nucleotide to actin in the presence of Fab(1-7) increased cooperatively with the increase in S-1 concentration. Also, in contrast to rigor conditions, there was no indication for the binding of Fab(1-7) and S-1.nucleotide to the same actin molecules. These results show a nucleotide-induced transition in the actomyosin interface, most likely related to the different roles of the N-terminal segment of actin in the binding of S-1 and S-1.nucleotide. The possible implications of these findings to the regulation of actomyosin interactions are discussed.  相似文献   

9.
A highly selective, high affinity recombinant anti-testosterone Fab fragment has been generated by stepwise optimization of the complementarity-determining regions (CDRs) by random mutagenesis and phage display selection of a monoclonal antibody (3-C(4)F(5)). The best mutant (77 Fab) was obtained by evaluating the additivity effects of different independently selected CDR mutations. The 77 Fab contains 20 mutations and has about 40-fold increased affinity (K(d) = 3 x 10(-10) m) when compared with the wild-type (3-C(4)F(5)) Fab. To obtain structural insight into factors, which are needed to improve binding properties, we have determined the crystal structures of the mutant 77 Fab fragment with (2.15 A) and without testosterone (2.10 A) and compared these with previously determined wild-type structures. The overall testosterone binding of the 77 Fab is similar to that of the wild-type. The improved affinity and specificity of the 77 Fab fragment are due to more comprehensive packing of the testosterone with the protein, which is the result of small structural changes within the variable domains. Only one important binding site residue Glu-95 of the heavy chain CDR3 is mutated to alanine in the 77 Fab fragment. This mutation, originally selected from the phage library based on improved specificity, provides more free space for the testosterone D-ring. The light chain CDR1 of 77 Fab containing eight mutations has the most significant effect on the improved affinity, although it has no direct contact with the testosterone. The mutations of CDR-L1 cause a rearrangement in its conformation, leading to an overall fine reshaping of the binding site.  相似文献   

10.
Free radicals produce a broad spectrum of DNA base modifications including 7,8-dihydro-8-oxoguanine (8-oxoG). Since free radicals have been implicated in many pathologies and in aging, 8-oxoG has become a benchmark for factors that influence free radical production. Fab g37 is a monoclonal antibody that was isolated by phage display in an effort to create a reagent for detecting 8-oxoG in DNA. Although this antibody exhibited a high degree of specificity for the 8-oxoG base, it did not appear to recognize 8-oxoG when present in DNA. Fab g37 was modified using HCDR1 and HCDR2 segment shuffling and light chain shuffling. Fab 166 and Fab 366 which bound to 8-oxoG in single-stranded DNA were isolated. Fab 166 binds more selectively to single-stranded oligonucleotides containing 8-oxoG versus control oligonucleotides than does Fab 366 which binds DNA with reduced dependency on 8-oxoG. Numerous other clones were also isolated and characterized that contained a spectrum of specificities for 8-oxoG and for DNA. Analysis of the primary sequences of these clones and comparison with their binding properties suggested the importance of different complementarity determining regions and residues in determining the observed binding phenotypes. Subsequent chain shuffling experiments demonstrated that mutation of SerH53 to ArgH53 in the Fab g37 heavy chain slightly decreased the Fab's affinity for 8-oxoG but significantly improved its binding to DNA in an 8-oxoG-dependent manner. The light chain shuffling experiments also demonstrated that numerous promiscuous light chains could enhance DNA binding when paired with either the Fab g37 or Fab 166 heavy chains; however, only the Fab 166 light chain did so in an additive manner when combined with the Fab 166 heavy chain that contains ArgH53. A three-point model for Fab 166 binding to oligonucleotides containing 8-oxoG is proposed. We describe a successful attempt to generate a desired antibody specificity, which was not present in the animal's original immune response.  相似文献   

11.
Fab fragments from a monoclonal antibody, OR-689.2.4, directed against the opioid receptor, selectively inhibited opioid binding to rat and guinea pig neural membranes. In a titratable manner, the Fab fragments noncompetitively inhibited the binding of the mu selective peptide [D-Ala2,(Me)Phe4,Gly(OH)5][3H] enkephalin and the delta selective peptide [D-Pen2,D-Pen5] [3H]enkephalin (where Pen represents penicillamine) to neural membranes. In contrast, kappa opioid binding, as measured by the binding of [3H]bremazocine to rat neural membranes and guinea pig cerebellum in the presence of mu and delta blockers, was not significantly altered by the Fab fragments. In addition to blocking the binding of mu and delta ligands, the Fab fragments displaced bound opioids from the membranes. When mu sites were blocked with [D-Ala2,(Me)Phe4,Gly(OH)5]enkephalin, the Fab fragments suppressed the binding of [D-Pen2,D-Pen5][3H]enkephalin to the same degree as when the mu binding site was not blocked. The Fab fragments also inhibited binding to the mu site regardless of whether or not the delta site was blocked with [D-Pen2,D-Pen5]enkephalin. This monoclonal antibody is directed against a 35,000-dalton protein. Since the antibody is able to inhibit mu and delta binding but not kappa opioid binding, it appears that this 35,000-dalton protein is an integral component of mu and delta opioid receptors but not kappa receptors.  相似文献   

12.
Actomyosin interactions in the presence of ATP were examined by using site-specific antibodies directed against the first seven N-terminal residues on skeletal alpha-actin. Fab fragments of these antibodies (S alpha N Fab) inhibited effectively the actin-activated ATPase of myosin subfragment 1 (S-1) at both 5 and 25 degrees C. Binding experiments carried out in the presence of ATP at 5 degrees C revealed that the catalytic inhibition was related to the inhibition of S-1 binding to actin by Fab. At equimolar ratios of Fab to actin, the binding of S-1 to actin and the activated ATPase were inhibited by 75 and 82%, respectively. These results, when contrasted with the small effect of Fab on rigor actomyosin binding, suggest ATP-induced changes at the interface of actin and myosin.  相似文献   

13.
《Gene》1996,168(1):9-14
The display of antibody (Ab) fragments (Fab) on the surface of filamentous bacteriophage (phage) and selection of phage that interact with a particular antigen (Ag) has enabled the isolation of Fab that bind nucleic acids. Nucleic acid (NA) binding Ab occur in vivo in connective tissue disease patients and certain inbred strains of mice and are thought to be pathogenic. Although there is ample data concerning the amino acid (aa) sequence of murine monoclonal Ab (mAb) reactive with DNA, significantly less is known about how autoAb interact with NA. The complementarity-determining regions (CDR) contained in the Fab contribute the most to Ag binding, especially through heavy (H)-chain CDR 3. We have examined the role of individual H-chain CDR of a previously isolated recombinant single-stranded DNA-binding Fab (DNA-1) in nucleic acid interaction using a combination of H-chain CDR switching and solution-binding experiments. The three H-chain CDR of DNA-1 Fab were independently switched with the H-chain CDR of a Fab (D5) with very similar sequence and framework (FR) that binds DNA poorly in order to create all possible H-chain CDR combinations. The chimeric Fab genes were bacterially expressed, and their products were purified and analyzed. Results indicated that the H-chain CDR 3 of DNA-1 Fab, in the context of the remainder of the H-chain of D5 Fab, restored binding to oligo(dT)15 to 60% of DNA-1 levels, whereas H-chain CDR 1 and 3 of DNA-1 with CDR 2 of D5 Fab restored binding to 100%. A combination of H-chain CDR 2 and 3 of DNA-1 Fab with H-chain CDR 1 of D5, unexpectedly resulted in the ability of the chimeric Fab to bind RNA preferentially over DNA. These studies demonstrate the importance of both H-chain CDR 1 and 3 in DNA recognition and further suggest that the specificity of the type of NA recognized by a particular Fab can be drastically altered by exchanging CDR.  相似文献   

14.
Human thrombopoietin (hTPO) primarily stimulates megakaryocytopoiesis and platelet production and is neutralized by the mouse TN1 antibody. The thermodynamic characteristics of TN1 antibody–hTPO complexation were analyzed by isothermal titration calorimetry (ITC) using an antigen‐binding fragment (Fab) derived from the TN1 antibody (TN1‐Fab). To clarify the mechanism by which hTPO is recognized by TN1‐Fab the conformation of free TN1‐Fab was determined to a resolution of 2.0 Å using X‐ray crystallography and compared with the hTPO‐bound form of TN1‐Fab determined by a previous study. This structural comparison revealed that the conformation of TN1‐Fab does not substantially change after hTPO binding and a set of 15 water molecules is released from the antigen‐binding site (paratope) of TN1‐Fab upon hTPO complexation. Interestingly, the heat capacity change (ΔCp) measured by ITC (?1.52 ± 0.05 kJ mol?1 K?1) differed significantly from calculations based upon the X‐ray structure data of the hTPO‐bound and unbound forms of TN1‐Fab (?1.02 ~ 0.25 kJ mol?1 K?1) suggesting that hTPO undergoes an induced‐fit conformational change combined with significant desolvation upon TN1‐Fab binding. The results shed light on the structural biology associated with neutralizing antibody recognition.  相似文献   

15.
Immunoglobulins of human heavy chain subgroup III have a binding site for Staphylococcal protein A on the heavy chain variable domain (V(H)), in addition to the well-known binding site on the Fc portion of the antibody. Thermodynamic characterization of this binding event and localization of the Fv-binding site on a domain of protein A is described. Isothermal titration calorimetry (ITC) was used to characterize the interaction between protein A or fragments of protein A and variants of the hu4D5 antibody Fab fragment. Analysis of binding isotherms obtained for titration of hu4D5 Fab with intact protein A suggests that 3-4 of the five immunoglobulin binding domains of full length protein A can bind simultaneously to Fab with a Ka of 5.5+/-0.5 x 10(5) M(-1). A synthetic single immunoglobulin binding domain, Z-domain, does not bind appreciably to hu4D5 Fab, but both the E and D domains are functional for hu4D5 Fab binding. Thermodynamic parameters for titration of the E-domain with hu4D5 Fab are n = 1.0+/-0.1, Ka = 2.0+/-0.3 x 10(5) M(-1), and deltaH = -7.1+/-0.4 kcal mol(-1). Similar binding thermodynamics are obtained for titration of the isolated V(H) domain with E-domain indicating that the E-domain binding site on Fab resides within V(H). E-domain binding to an IgG1 Fc yields a higher affinity interaction with thermodynamic parameters n = 2.2+/-0.1, Ka > 1.0 x 10(7) M(-1), and deltaH = -24.6+/-0.6 kcal mol(-1). Fc does not compete with Fab for binding to E-domain indicating that the two antibody fragments bind to different sites. Amide 1H and 15N resonances that undergo large changes in NMR chemical shift upon Fv binding map to a surface defined by helix-2 and helix-3 of E-domain, distinct from the Fc-binding site observed in the crystal structure of the B-domain/Fc complex. The Fv-binding region contains negatively charged residues and a small hydrophobic patch which complements the basic surface of the region of the V(H) domain implicated previously in protein A binding.  相似文献   

16.
Derivatives of ribonuclease A (RNase A) with modifications in positions 1 and/or 7 were prepared by subtilisin-catalyzed semisynthesis starting from synthetic RNase 1-20 peptides and S-protein (RNase 21-124). The lysyl residue at position 1 was replaced by alanine, whereas Lys-7 was replaced by cysteine that was specifically modified prior to semisynthesis. The enzymes obtained were characterized by protein chemical methods and were active toward uridylyl-3',5'-adenosine and yeast RNA. When Lys-7 was replaced by S-methyl-cysteine or S-carboxamido-contrast, the catalytic properties were only slightly altered. The dissociation constant for the RNase A-RI complex increased from 74 fM (RNase A) to 4.5 pM (Lys-1, Cys-7-methyl RNase), corresponding to a decrease in binding energy of 10 kJ mol-1. Modifications that introduced a positive charge in position 7 (S-aminoethyl- or S-ethylpyridyl-cysteine) led to much smaller losses. The replacement of Lys-1 resulted in a 4-kJ mol-1 loss in binding energy. S-protein bound to RI with Ki = 63.4 pM, 800-fold weaker than RNase A. This corresponded to a 16-kJ mol-1 difference in binding energy. The results show that the N-terminal portion of RNase A contributes significantly to binding of ribonuclease inhibitor and that ionic interactions of Lys-7 and to a smaller extent of Lys-1 provide most of the binding energy.  相似文献   

17.
T Frey  J Anglister  H M McConnell 《Biochemistry》1988,27(14):5161-5165
Specifically deuteriated Fab fragments of the anti-spin-label antibody AN02 were prepared. NMR difference spectra were obtained, in which the spectrum of Fab with some fraction of the binding sites occupied with spin-label hapten was subtracted from the spectrum of Fab with no spin-label. The peak heights were analyzed as a function of the fractional occupation of the binding site, using a computer program that calculates a best fit to the observed spectra. This method treats all of the peaks in the spectra simultaneously. Analyzing all peaks at once allows for the interdependencies in the spectra arising from overlap of positive and negative signals from different peaks. The fitting program calculates line widths for the peaks arising from protons in the binding site region. Almost all of the line widths calculated for the spectrum of the Fab complex with diamagnetic hapten dinitrophenyldiglycine were found to be narrower than the line widths of the corresponding resonances in the spectrum of Fab with an empty binding site. The distances of the binding site region protons from the unpaired electron of the hapten were also obtained from this calculation. Two tyrosine protons were found to be close (less than A) to this electron. These line-width and distance results are discussed with respect to the structure and dynamics of the antibody binding site.  相似文献   

18.
Kurz JC  Fierke CA 《Biochemistry》2002,41(30):9545-9558
The RNA subunit of bacterial ribonuclease P (RNase P) requires high concentrations of magnesium ions for efficient catalysis of tRNA 5'-maturation in vitro. The protein component of RNase P, required for cleavage of precursor tRNA in vivo, enhances pre-tRNA binding by directly contacting the 5'-leader sequence. Using a combination of transient kinetics and equilibrium binding measurements, we now demonstrate that the protein component of RNase P also facilitates catalysis by specifically increasing the affinities of magnesium ions bound to the RNase P x pre-tRNA(Asp) complex. The protein component does not alter the number or apparent affinity of magnesium ions that are either diffusely associated with the RNase P RNA polyanion or required for binding mature tRNA(Asp). Nor does the protein component alter the pH dependence of pre-tRNA(Asp) cleavage catalyzed by RNase P, providing further evidence that the protein component does not directly stabilize the catalytic transition state. However, the protein subunit does increase the affinities of at least four magnesium sites that stabilize pre-tRNA binding and, possibly, catalysis. Furthermore, this stabilizing effect is coupled to the P protein/5'-leader contact in the RNase P holoenzyme x pre-tRNA complex. These results suggest that the protein component enhances the magnesium affinity of the RNase P x pre-tRNA complex indirectly by binding and positioning pre-tRNA. Furthermore, RNase P is inhibited by cobalt hexammine (K(I) = 0.11 +/- 0.01 mM) while magnesium, manganese, cobalt, and zinc compete with cobalt hexammine to activate RNase P. These data are consistent with the hypothesis that catalysis by RNase P requires at least one metal-water ligand or one inner-sphere metal contact.  相似文献   

19.
The plasma cholesteryl ester transfer protein (CETP, Mr 74,000) has a binding site for neutral lipid which can readily equilibrate with lipoprotein cholesteryl esters or triglycerides. Recently, a monoclonal antibody (TP2) was obtained which neutralizes the cholesteryl ester (CE) and triglyceride (TG) transfer activities of the CETP. In this report, the epitope of the inhibitory monoclonal antibody has been localized to a hydrophobic 26-amino acid sequence at the COOH terminus of CETP. The Fab fragments of TP2 caused partial (50%) inhibition of CE transfer and complete inhibition of TG transfer by the CETP. Similarly, the Fab fragments inhibited (37%) the binding of CE to the CETP and abolished the binding of TG to the CETP. Surprisingly, the TP2 Fab was also found to enhance the binding of CETP to plasma lipoproteins and to phospholipid vesicles. In conclusion, the TP2 monoclonal antibody inhibits lipid transfer by blocking the uptake of lipid by CETP. The COOH-terminal epitope may be in or near the neutral lipid binding site. Occupancy of this site by TP2 Fab fragments or by neutral lipid may result in a conformational change of CETP causing enhanced binding to lipoproteins or vesicles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号