首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D Sondhi  P A Cole 《Biochemistry》1999,38(34):11147-11155
Csk (C-terminal Src kinase) is a protein tyrosine kinase that phosphorylates Src family member C-terminal tails, resulting in downregulation of Src family members. It is composed of three principal domains: an SH3 (Src homology 3) domain, an SH2 (Src homology 2) domain, and a catalytic domain. The impact of the noncatalytic domains on kinase catalysis was investigated. The Csk catalytic domain was expressed in Escherichia coli as a recombinant glutathione S-transferase-fusion protein and demonstrated to have 100-fold reduced catalytic efficiency. Production of the catalytic domain by proteolysis of full-length Csk afforded a similar rate reduction. This suggested that the reduction in catalytic efficiency of the recombinant catalytic domain was intrinsic to the sequence and not an artifact related to faulty expression. This rate reduction was similar for peptide and protein substrates and was due almost entirely to a reduced k(cat) rather than to effects on substrate K(m)s. Viscosity experiments on the catalytic fragment kinase reaction demonstrated that the chemical (phosphoryl transfer) step had a reduced rate. While the Csk SH2 domain had no intermolecular effect on the kinase activity of the Csk catalytic domain, the SH3 domain and SH3-SH2 fragment led to a partial rescue (4-5-fold) of the lost kinase activity. This rescue was not achieved with two other SH3 domains (lymphoid cell kinase, Abelson kinase). The extrapolated K(d) of interaction for the Csk catalytic domain with the Csk SH3 domain was 2.2 microM and that of the Csk catalytic domain with the Csk SH3-SH2 fragment was 8.8 microM. Taken together, these findings suggest that there is likely an intramolecular interaction between the catalytic and SH3 domains in full-length Csk that is important for efficient catalysis. By employing a Csk SH3 specific type II polyproline helix peptide and carrying out site-directed mutagenesis, it was established that the SH3 surface that interacts with the catalytic domain was distinct from the surface that binds type II polyproline helix peptides. This finding suggests a novel mode of protein-protein interaction for an SH3 domain. The implications for Csk substrate selectivity, regulation, and function are discussed.  相似文献   

2.
An endo-1,3-β-glucanase was purified from Tunicase?, a crude enzyme preparation from Cellulosimicrobium cellulans DK-1, and determined to be a 383-residue protein (Ala1-Leu383), comprising a catalytic domain of the glycoside hydrolase family 16 and a C-terminal carbohydrate-binding module family 13. The Escherichia coli expression system of the catalytic domain (Ala1-Thr256) was constructed, and the protein with N-terminal polyhistidine tag was purified using a Ni-nitrilotriacetic acid column. We analyzed enzymatic properties of the recombinant catalytic domain, its variants, and the Tunicase?-derived full-length endo-1,3-β-glucanase. Substitution of Glu119 with Ala and deletion of Met123, both of the residues are located in the catalytic motif, resulted in the loss of hydrolytic activity. In comparison between the full-length enzyme and isolated catalytic domain, their hydrolytic activities for soluble substrates such as laminarin and laminarioligosaccharides were similar. In contrast, the hydrolytic activity of the full-length enzyme for insoluble substrates such as curdlan and yeast-glucan was significantly higher than that of the catalytic domain. It should be noted that the acid stabilities for the hydrolysis of laminarin were clearly different. Secondary structure analysis using circular dichroism showed that the full-length enzyme was more acid stable than was the catalytic domain, possibly because of domain interactions between the catalytic domain and the carbohydrate-binding module.  相似文献   

3.
Cloning, expression, purification, and characterization of rat MMP-12   总被引:3,自引:0,他引:3  
Macrophage metalloelastase (MMP-12) is implicated in the pathology of many diseases such as emphysema, aortic lesions and cancer. Recently, MMP-12 was cloned and purified from mouse and human macrophages. We report here the expression of the full-length and catalytic domain of rat MMP-12 in Escherichia coli and characterization of the purified enzyme. Inclusion bodies of expressed rat MMP-12 catalytic domain were denatured and refolded using a new method, and then affinity purified to near homogeneity with zinc-chelating Sepharose. The purified rat MMP-12 catalytic domain was highly active in digesting substrates, having a K(m) of 12 microM and optimal pH of 7.5--8.5. During investigation of natural substrate specificity, we found that rat MMP-12 catalytic domain was able to completely degrade collagen-V, partially degrade collagen-I, but it was unable to digest collagen-IV. The enzyme could also degrade osteonectin, vitronectin, and fibronectin, but not laminin and albumin. The catalytic properties and natural substrate specificity of rat MMP-12 catalytic domain differed from those of human MMP-12 catalytic domain.  相似文献   

4.
To examine the interactions between Src homology,domains and the tyrosine kinase catalytic domain of v-Src, various combinations of domains have been expressed in bacteria as fusion proteins. Constructs containing the isolated catalytic domain, SH2 + catalytic domain, and SH3 + SH2 + catalytic domains were active in autophosphorylation assays. For the catalytic domain of v-Src, but not for v-Abl, addition of exogenous Src SH3-SH2 domains stimulated the autophosphorylation activity. In contrast to results for autophosphorylation, constructs containing Src homology domains were more active towards a synthetic peptide substrate than the isolated catalytic domain. The ability of the SH2 and SH3 domains of v-Src to stabilize an active enzyme conformation was also confirmed by refolding after denaturation in guanidinium hydrochloride. Collectively the data suggest that, in addition to their roles in intermolecular protein-protein interactions, the Src homology regions of v-Src exert a positive influence on tyrosine kinase function, potentially by maintaining an active conformation of the catalytic domain.  相似文献   

5.
Splicing variants of type 4 phosphodiesterases (PDE4) are regulated by phosphorylation. In these proteins, a conserved region is located between the amino-terminal domain, which is the target for phosphorylation, and the catalytic domain. Previous studies have indicated that nested deletions encompassing this region cause an increase in catalytic activity, suggesting this domain exerts an inhibitory constraint on catalysis. Here, we have further investigated the presence and function of this domain. A time-dependent increase in hydrolytic activity was observed when PDE4D3 from FRTL-5 cells was incubated with the endoproteinase Lys-C. The activation was abolished by protease inhibitors and was absent when a phosphorylated enzyme was used. Western blot analysis with PDE4D-specific antibodies indicated the Lys-C treatment separates the catalytic domain of PDE4D3 from the inhibitory domain. Incubation with antibodies recognizing an epitope within this domain caused a 3- to 4-fold increase in activity of native or recombinant PDE4D3. Again, PDE activation by these antibodies had properties similar to, and not additive with, the activation by protein kinase A phosphorylation. An interaction between the inhibitory domain and both regulatory and catalytic domains of PDE4D3 was detected by the yeast two-hybrid system. Mutations of Ser54 to Ala in the regulatory domain decreased or abolished this interaction, whereas mutations of Ser54 to the negatively charged Asp strengthened it. These data strongly support the hypothesis that an inhibitory domain is present in PDE4D and that phosphorylation of the regulatory domain causes activation of the enzyme by modulating the interaction between inhibitory and catalytic domains.  相似文献   

6.
The catalytic domain of clostridial neurotoxins is a substrate of tyrosine-specific protein kinases. The functional role of tyrosine phosphorylation and also the number and location of its (their) phosphorylation site(s) are yet elusive. We have used the recombinant catalytic domain of botulinum neurotoxin E (BoNT E) to examine these issues. Bacterially expressed and purified BoNT E catalytic domain was fully active, and was phosphorylated in vitro by the tyrosine-specific kinase Src. Tyrosine phosphorylation of the catalytic domain increased the protein thermal stability without affecting its proteolytic activity. Covalent modification of the endopeptidase promoted a disorder-to-order transition, as evidenced by the 35% increment of the alpha-helical content, which resulted in a 4 degrees C increase of its denaturation temperature. Site-directed replacement of tyrosine at position 67 completely abolished phosphate incorporation by Src. Constitutively unphosphorylated endopeptidase mutants exhibited functional properties virtually identical to those displayed by the nonphosphorylated wild-type catalytic domain. These findings indicate the presence of a single phosphorylation site in the catalytic domain of clostridial neurotoxins, and that its covalent modification primarily modulates the protein thermostability.  相似文献   

7.
The chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1, Tk-ChiA, has an interesting multidomain structure containing dual catalytic domains and triple chitin-binding domains. To determine the biochemical properties of each domain, we constructed deletion mutant genes corresponding to the individual catalytic domains and purified the recombinant proteins. A synergistic effect was observed when chitin was degraded in the presence of both catalytic domains, suggesting different cleavage specificity of these domains. Analyses of degradation products from N-acetyl-chitooligosaccharides and their chromogenic derivatives with thin layer chromatography indicated that the N-terminal catalytic domain mainly hydrolyzed the second glycosidic bond from the nonreducing end of the oligomers, whereas the C-terminal domain randomly hydrolyzed glycosidic bonds other than the first bond from the nonreducing end. Both catalytic domains formed diacetyl-chitobiose as a major end product and possessed transglycosylation activity. Further analysis of degradation products from colloidal chitin with high performance liquid chromatography showed that the N-terminal catalytic domain exclusively liberated diacetyl-chitobiose, whereas reactions with the C-terminal domain led to N-acetyl-chitooligosaccharides of various lengths. These results demonstrated that the N-terminal and C-terminal catalytic domains functioned as exo- and endochitinases, respectively. The biochemical results provide a physiological explanation for the presence of two catalytic domains with different specificity and suggest a cooperative function between the two on a single polypeptide in the degradation of chitin.  相似文献   

8.
Tumor necrosis factor-alpha-converting enzyme (TACE) is a disintegrin metalloproteinase that processes tumor necrosis factor and a host of other ectodomains. TACE is biosynthesized as a zymogen, and activation requires the removal of an inhibitory pro domain. Little is known about how the pro domain exerts inhibition for this class of enzymes. To study the inhibitory properties of the pro domain of TACE, we have expressed it in isolation from the rest of the protease. Here we show that the TACE pro domain (TACE Pro) is a stably folded protein that is able to inhibit this enzyme. TACE Pro inhibited the catalytic domain of TACE with an IC(50) of 70 nm. In contrast, this inhibitory potency decreased over 30-fold against a TACE form containing the catalytic plus disintegrin/cysteine-rich domains (IC(50) greater that 2 microm). The disintegrin/cysteine-rich region in isolation also decreases the interaction of TACE Pro with the catalytic domain. Surprisingly, we found that the cysteine switch motif located in TACE Pro was not essential for inhibition of the enzymatic activity of TACE; the pro domain variant C184A showed the same inhibitory potency against both TACE forms as wild type TACE Pro. X-ray absorption spectroscopy experiments indicate that binding of TACE Pro to the catalytic domain does include ligation of the catalytic zinc ion via the sulfur atom of its conserved Cys(184) residue. Moreover, the binding of TACE Pro to the catalytic zinc ion partially oxidizes the catalytic zinc ion of the enzyme. Despite this, the nature of the interaction between the pro and catalytic domains of TACE is not consistent with a simple competitive model of inhibition based on cysteine switch ligation of the zinc ion within the active site of TACE.  相似文献   

9.
The tumor necrosis factor-alpha-converting enzyme (TACE) is a membrane-anchored zinc metalloprotease involved in precursor tumor necrosis factor-alpha secretion. We designed a series of constructs containing full-length human TACE and several truncate forms for overexpression in insect cells. Here, we demonstrate that full-length TACE is expressed in insect cells inefficiently: only minor amounts of this enzyme are converted from an inactive precursor to the mature, functional form. Removal of the cytoplasmic and transmembrane domains resulted in the efficient secretion of mature, active TACE. Further removal of the cysteine-rich domain located between the catalytic and transmembrane domains resulted in the secretion of mature catalytic domain in association with the precursor (pro) domain. This complex was inactive and function was only restored after dissociation of the complex by dilution or treatment with 4-aminophenylmercuric acetate. Therefore, the pro domain of TACE is an inhibitor of the catalytic domain, and the cysteine-rich domain appears to play a role in the release of the pro domain. Insect cells failed to secrete a deletion mutant encoding the catalytic domain but lacking the inhibitory pro domain. This truncate was inactive and extensively degraded intracellularly, suggesting that the pro domain is required for the secretion of functional TACE.  相似文献   

10.
James CL  Viola RE 《Biochemistry》2002,41(11):3720-3725
The bifunctional enzyme aspartokinase-homoserine dehydrogenase I from Escherichia coli catalyzes non-consecutive reactions in the aspartate pathway of amino acid biosynthesis. Both catalytic activities are subject to allosteric regulation by the end product amino acid L-threonine. To examine the kinetics and regulation of the enzymes in this pathway, each of these catalytic domains were separately expressed and purified. The separated catalytic domains remain active, with each of their catalytic activities enhanced in comparison to the native enzyme. The allosteric regulation of the kinase activity is lost, and regulation of the dehydrogenase activity is dramatically decreased in these separate domains. To create a new bifunctional enzyme that can catalyze consecutive metabolic reactions, the aspartokinase I domain was fused to the enzyme that catalyzes the intervening reaction in the pathway, aspartate semialdehyde dehydrogenase. A hybrid bifunctional enzyme was also created between the native monofunctional aspartokinase III, an allosteric enzyme regulated by lysine, and the catalytic domain of homoserine dehydrogenase I with its regulatory interface domain still attached. In this hybrid the kinase activity remains sensitive to lysine, while the dehydrogenase activity is now regulated by both threonine and lysine. The dehydrogenase domain is less thermally stable than the kinase domain and becomes further destabilized upon removal of the regulatory domain. The more stable aspartokinase III is further stabilized against thermal denaturation in the hybrid bifunctional enzyme and was found to retain some catalytic activity even at temperatures approaching 100 degrees C.  相似文献   

11.
Exposure of cells to mitogens or growth factors stimulates Raf-1 activity through a complex mechanism that involves binding to active Ras, phosphorylation on multiple residues, and protein-protein interactions. Recently it was shown that the amino terminus of Raf-1 contains an autoregulatory domain that can inhibit its activity in Xenopus oocytes. In the present work we show that expression of the Raf-1 autoinhibitory domain blocks extracellular signal-regulated kinase 2 activation by the Raf-1 catalytic domain in mammalian cells. We also show that phosphorylation of Raf-1 on serine 338 by PAK1 and tyrosines 340 and 341 by Src relieves autoinhibition and that this occurs through a specific decrease in the binding of the Raf-1 regulatory domain to its catalytic domain. In addition, we demonstrate that phosphorylation of threonine 491 and serine 494, two phosphorylation sites in the catalytic domain that are required for Raf-1 activation, is unlikely to regulate autoinhibition. These results demonstrate that the autoinhibitory domain of Raf-1 is functional in mammalian cells and that its interaction with the Raf-1 catalytic domain is regulated by phosphorylation of serine 338 and tyrosines 340 and 341.  相似文献   

12.
Effect of metal ions on the activity of the catalytic domain of calcineurin   总被引:1,自引:0,他引:1  
Calcineurin (CN) is a heterodimer, composed of a catalytic subunit (CNA) and a regulatory subunit (CNB). There are four functional domains present in CNA, which are catalytic domain (CNa), CNB-binding domain (BBH), CaM-binding domain (CBH) and autoinhibitory domain (AI). It has been shown previously that the in vitro activity of calcineurin is relied primarily on the binding of metal ions. Mn2+ and Ni2+ are the most crucial cation-activators for this enzyme. In order to determine which domain(s) in CN is functionally regulated by metal ions, the rat CNA alpha subunit and its catalytic domain (CNa) were cloned and expressed in E. coli. The effects of Mn2+, Ni2+ and Mg2+ on the catalytic activity of these purified proteins were examined. Our results demonstrate that all the metal ions tested in this study activated either CNA or CNa. However, the activation degree of CNa by the metal ions was much higher than that of CNA. In term of different metal ions, the activating extents to CNA and CNa were different. To CNA, the activating order from high to low was Mg2+ > > Ni2+ > Mn2+, but Mn2+ > Ni2+ > > Mg2+ to CNa. No effect of CaM/Ca2+ and CNB/Ca2+ on the activity of CNa was observed in our experiments. Moreover, a weak interaction (or untight coordination binding) between metal ions and the enzyme molecule was also identified. These results suggest that the activation of these enzymes by the exogenous metal ions might be via both regulating fragment of CNA (including BBH, CBH and AI) and catalytic domain (CNa), and mainly via regulating fragment to CNA and mainly via catalytic domain to CNa. The activating extents of metal ions via catalytic domain were higher than that via regulating fragment. The results obtained in this study should be very useful for understanding the molecular mechanism underlying the interaction between calcineurin and metal ions, especially Mn2+, Ni2+ and Mg2+.  相似文献   

13.
L Zhao  E Pate  A J Baker    R Cooke 《Biophysical journal》1995,69(3):994-999
Electron paramagnetic resonance spectroscopy of a spin probe attached to cys-707 on myosin cross-bridges was used to monitor the orientation of the myosin catalytic domain at the beginning and end of the working power stroke in active muscle. Elevated concentrations of orthophosphate and decreased pH were used to shift the population of cross-bridges from force-producing states into low force, pre-power-stroke states. The spectrum of probes in active fibers was not changed by conditions that reduced tension by 70%, indicating that the orientation of the catalytic domain was the same at the beginning and end of the power stroke. Thus the data show that the catalytic domain remains rigidly oriented on the actin filament during the power stroke.  相似文献   

14.
10-Formyltetrahydrofolate dehydrogenase (FDH) consists of two independent catalytic domains, N- and C-terminal, connected by a 100-amino acid residue linker (intermediate domain). Our previous studies on structural organization and enzymatic properties of rat FDH suggest that the overall enzyme reaction, i.e. NADP(+)-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO(2), consists of two steps: (i) hydrolytic cleavage of the formyl group in the N-terminal catalytic domain, followed by (ii) NADP(+)-dependent oxidation of the formyl group to CO(2) in the C-terminal aldehyde dehydrogenase domain. In this mechanism, it was not clear how the formyl group is transferred between the two catalytic domains after the first step. This study demonstrates that the intermediate domain functions similarly to an acyl carrier protein. A 4'-phosphopantetheine swinging arm bound through a phosphoester bond to Ser(354) of the intermediate domain transfers the formyl group between the catalytic domains of FDH. Thus, our study defines the intermediate domain of FDH as a novel carrier protein and provides the previously lacking component of the FDH catalytic mechanism.  相似文献   

15.
Metacaspases are cysteine peptidases that could play a role similar to caspases in the cell death programme of plants, fungi and protozoa. The human protozoan parasite Leishmania major expresses a single metacaspase (LmjMCA) harbouring a central domain with the catalytic dyad histidine and cysteine as found in caspases. In this study, we investigated the processing sites important for the maturation of LmjMCA catalytic domain, the cellular localization of LmjMCA polypeptides, and the functional role of the catalytic domain in the cell death pathway of Leishmania parasites. Although LmjMCA polypeptide precursor form harbours a functional mitochondrial localization signal (MLS), we determined that LmjMCA polypeptides are mainly localized in the cytoplasm. In stress conditions, LmjMCA precursor forms were extensively processed into soluble forms containing the catalytic domain. This domain was sufficient to enhance sensitivity of parasites to hydrogen peroxide by impairing the mitochondrion. These data provide experimental evidences of the importance of LmjMCA processing into an active catalytic domain and of its role in disrupting mitochondria, which could be relevant in the design of new drugs to fight leishmaniasis and likely other protozoan parasitic diseases.  相似文献   

16.
The presence of lignin has shown to play an important role in the enzymatic degradation of softwood. The adsorption of enzymes, and their constituent functional domains on the lignocellulosic material is of key importance to fundamental knowledge of enzymatic hydrolysis. In this study, we compared the adsorption of two purified cellulases from Trichoderma reesei, CBH I (Cel7A) and EG II (Cel5A) and their catalytic domains on steam pretreated softwood (SPS) and lignin using tritium labeled enzymes. Both CBH I and its catalytic domain exhibited a higher affinity to SPS than EG II or its catalytic domain. Removal of cellulose binding domain decreased markedly the binding efficiency. Significant amounts of CBH I and EG II also bound to isolated lignin. Surprisingly, the catalytic domains of the two enzymes of T. reesei differed essentially in the adsorption to isolated lignin. The catalytic domain of EG II was able to adsorb to alkaline isolated lignin with a high affinity, whereas the catalytic domain of CBH I did not adsorb to any of the lignins tested. The results indicate that the cellulose binding domain has a significant role in the unspecific binding of cellulases to lignin.  相似文献   

17.
He HL  Guo J  Chen XL  Xie BB  Zhang XY  Yu Y  Chen B  Zhou BC  Zhang YZ 《PloS one》2012,7(4):e35442
E495 is the most abundant protease secreted by the Arctic sea-ice bacterium Pseudoalteromonas sp. SM495. As a thermolysin family metalloprotease, E495 was found to have multiple active forms in the culture of strain SM495. E495-M (containing only the catalytic domain) and E495-M-C1 (containing the catalytic domain and one PPC domain) were two stable mature forms, and E495-M-C1-C2 (containing the catalytic domain and two PPC domains) might be an intermediate. Compared to E495-M, E495-M-C1 had similar affinity and catalytic efficiency to oligopeptides, but higher affinity and catalytic efficiency to proteins. The PPC domains from E495 were expressed as GST-fused proteins. Both of the recombinant PPC domains were shown to have binding ability to proteins C-phycocyanin and casein, and domain PPC1 had higher affinity to C-phycocyanin than domain PPC2. These results indicated that the domain PPC1 in E495-M-C1 could be helpful in binding protein substrate, and therefore, improving the catalytic efficiency. Site-directed mutagenesis on the PPC domains showed that the conserved polar and aromatic residues, D26, D28, Y30, Y/W65, in the PPC domains played key roles in protein binding. Our study may shed light on the mechanism of organic nitrogen degradation in the Arctic sea ice.  相似文献   

18.
NMR was used to obtain spectroscopic evidence supporting a two domain model for zoocin A in which an N-terminal catalytic domain is linked by a threonine-proline rich linker to a target recognition domain responsible for recognizing the cell wall of bacteria susceptible to the bacteriolytic action of the enzyme. When cloned and separately expressed, each domain retains the folding found in the whole enzyme. Additionally, spectroscopy suggests that the target recognition domain has a conformation typical of a soluble globular protein, while the catalytic domain aggregates at low millimolar concentrations.  相似文献   

19.
Atypical protein kinase C zeta (PKCzeta) is known to transduce signals that influence cell proliferation and survival. Here we show that recombinant human caspases can process PKCzeta at three sites in the hinge region between the regulatory and catalytic domains. Caspase-3, -6, -7, and -8 chiefly cleaved human PKCzeta at EETD downward arrowG, and caspase-3 and -7 also cleaved PKCzeta at DGMD downward arrowG and DSED downward arrowL, respectively. Processing of PKCzeta expressed in transfected cells occurred chiefly at EETD downward arrowG and DGMD downward arrowG and produced carboxyl-terminal polypeptides that contained the catalytic domain. Epitope-tagged PKCzeta that lacked the regulatory domain was catalytically active following expression in HeLa cells. Induction of apoptosis in HeLa cells by tumor necrosis factor alpha plus cycloheximide evoked the conversion of full-length epitope-tagged PKCzeta to two catalytic domain polypeptides and increased PKCzeta activity. A caspase inhibitor, zVAD-fmk, prevented epitope-tagged PKCzeta processing and activation following the induction of apoptosis. Induction of apoptosis in rat parotid C5 cells produced catalytic domain polypeptides of endogenous PKCzeta and increased PKCzeta activity. Caspase inhibitors prevented the increase in PKCzeta activity and production of the catalytic domain polypeptides. Treatment with lactacystin, a selective inhibitor of the proteasome, caused polyubiquitin-PKCzeta conjugates to accumulate in cells transfected with the catalytic domain or full-length PKCzeta, or with a PKCzeta mutant that was resistant to caspase processing. We conclude that caspases process PKCzeta to carboxyl-terminal fragments that are catalytically active and that are degraded by the ubiquitin-proteasome pathway.  相似文献   

20.
The breakdown of β-1,4-mannoside linkages in a variety of mannan-containing polysaccharides is of great importance in industrial processes such as kraft pulp delignification, food processing and production of second-generation biofuels, which puts a premium on studies regarding the prospection and engineering of β-mannanases. In this work, a two-domain β-mannanase from Thermotoga petrophila that encompasses a GH5 catalytic domain with a C-terminal CBM27 accessory domain, was functionally and structurally characterized. Kinetic and thermal denaturation experiments showed that the CBM27 domain provided thermo-protection to the catalytic domain, while no contribution on enzymatic activity was observed. The structure of the catalytic domain determined by SIRAS revealed a canonical (α/β)(8)-barrel scaffold surrounded by loops and short helices that form the catalytic interface. Several structurally related ligand molecules interacting with TpMan were solved at high-resolution and resulted in a wide-range representation of the subsites forming the active-site cleft with residues W134, E198, R200, E235, H283 and W284 directly involved in glucose binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号