首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are clusters of basic amino acids on many cytoplasmic proteins that bind transiently to membranes (e.g., protein kinase C) as well as on the cytoplasmic domain of many intrinsic membrane proteins (e.g., glycophorin). To explore the possibility that these basic residues bind electrostatically to monovalent acidic lipids, we studied the binding of the peptides Lysn and Argn (n = 1-5) to bilayer membranes containing phosphatidylserine (PS) or phosphatidylglycerol (PG). We made electrophoretic mobility measurements using multilamellar vesicles, fluorescence and equilibrium binding measurements using large unilamellar vesicles, and surface potential measurements using monolayers. None of the peptides bound to vesicles formed from the zwitterionic lipid phosphatidylcholine (PC) but all bound to vesicles formed from PC/PS or PC/PG mixtures. None of the peptides exhibited specificity between PS and PG. Each lysine residue that was added to Lys2 decreased by one order of magnitude the concentration of peptide required to reverse the charge on the vesicle; equivalently it increased by one order of magnitude the binding affinity of the peptides for the PS vesicles. The simplest explanation is that each added lysine binds independently to a separate PS with a microscopic association constant of 10 M-1 or a free energy of approximately 1.4 kcal/mol. Similar, but not identical, results were obtained with the Argn peptides. A simple theoretical model combines the Gouy-Chapman theory (which accounts for the nonspecific electrostatic accumulation of the peptides in the aqueous diffuse double layer adjacent to the membrane) with mass action equations (which account for the binding of the peptides to greater than 1 PS). This model can account qualitatively for the dependence of binding on both the number of basic residues in the peptides and the mole fraction of PS in the membrane.  相似文献   

2.
We have studied the binding of peptides containing both basic and aromatic residues to phospholipid vesicles. The peptides caveolin(92-101) and MARCKS(151-175) both contain five aromatic residues, but have 3 and 13 positive charges, respectively. Our results show the aromatic residues insert into the bilayer and anchor the peptides weakly to vesicles formed from the zwitterionic lipid phosphatidylcholine (PC). Incorporation of a monovalent acidic lipid (e.g., phosphatidylserine, PS) into the vesicles enhances the binding of both peptides via nonspecific electrostatic interactions. As predicted from application of the Poisson-Boltzmann equation to atomic models of the peptide and membranes, the enhancement is larger (e.g., 10(4)- vs 10-fold for 17% PS) for the more basic MARCKS(151-175). Replacing the five Phe with five Ala residues in MARCKS(151-175) decreases the binding to 10:1 PC/PS vesicles only slightly (6-fold). This result is also consistent with the predictions of our theoretical model: the loss of the attractive hydrophobic energy is partially compensated by a decrease in the repulsive Born/desolvation energy as the peptide moves away from the membrane surface. Incorporating multivalent phosphatidylinositol 4, 5-bisphosphate (PIP(2)) into PC vesicles produces dramatically different effects on the membrane binding of the two peptides: 1% PIP(2) enhances caveolin(92-101) binding only 3-fold, but increases MARCKS(151-175) binding 10(4)-fold. The strong interaction between the effector region of MARCKS and PIP(2) has interesting implications for the cellular function of MARCKS.  相似文献   

3.
We synthesized cyclic disulfide-bonded (i, i+4) peptides with various net positive charges (+2-+5) from linear peptides derived from the alpha helical domain of Tenecin 1, an insect defensin, and investigated the effect of the intradisulfide bridge (i, i+4) on hydrophobicity, secondary structure, leakage activity and binding activity for large unilamellar vesicles, antimicrobial activity, and hemolytic activity. Intradisulfide bridge formation of the peptides resulted in the increase of amphiphilicity and hydrophobicity. Cyclic forms of the peptides did not deeply penetrate into PG/PC (1:1, mole ratio) large unilamellar vesicles and had a decreased lipid membrane perturbation activity for PG/PC LUVs. When the peptides interacted with PG/CL (2:1, mole ratio) LUVs, cyclic peptides with a high net positive charge (+4-+5) showed similar binding affinities and leakage activities for vesicles to those of linear forms, whereas cyclic peptides with a low net positive charge (+2-+3) exhibited lower leakage activity than their linear forms. CD spectra indicate that the intradisulfide bridge (i, i+4) provided little conformational constraint to linear peptides in buffer solution but resulted in the decrease of alpha helicity of the peptides in lipid membrane mimic conditions. The cyclic peptide with the highest net positive charge had a similar antibacterial activity to that of the linear peptide, whereas the cyclic peptides with a low net positive charge (+3-+4) exhibited lower antibacterial activity than their linear forms. The cyclic peptides of an appropriate net charge showed more potent activities against some bacteria than those of linear forms under high salt conditions.  相似文献   

4.
Xu C  Loew LM 《Biophysical journal》2003,84(4):2768-2780
Ratiometric imaging of styryl potentiometric dyes can be used to measure the potential gradient inside the membrane (intramembrane potential), which is the sum of contributions from transmembrane potential, dipole potential, and the difference in the surface potentials at both sides of the membrane. Here changes in intramembrane potential of the bilayer membranes in two different preparations, lipid vesicles and individual N1E-115 neuroblastoma cells, are calculated from the fluorescence ratios of di-4-ANEPPS and di-8-ANEPPS as a function of divalent cation concentration. In lipid vesicles formed from the zwitterionic lipid phosphatidylcholine (PC) or from a mixture of the negatively charged lipid phosphatidylserine (PS) and PC, di-4-ANEPPS produces similar spectral changes in response to both divalent cation-induced changes in intramembrane potential and transmembrane potential. The changes in potential on addition of divalent cations measured by the fluorescence ratios of di-4-ANEPPS are consistent with a change in surface potential that can be modeled with the Gouy-Chapman-Stern theory. The derived intrinsic 1:1 association constants of Ba and Mg with PC are 1.0 and 0.4 M(-1); the intrinsic 1:1 association constants of Ba and Mg with PS are 1.9 and 1.8 M(-1). Ratiometric measurements of voltage sensitive dyes also allow monitoring of intramembrane potentials in living cells. In neuroblastoma cells, a tenfold increase of concentration of Ba, Mg, and Ca gives a decrease in intramembrane potential of 22 to 24 mV. The observed changes in potential could also be described by Gouy-Chapman theory. A surface charge density of 1 e(-)/115 A(2) provides the best fit and the intrinsic 1:1 association constants of Ba, Mg, and Ca with acidic group in the surface are 1.7, 6.1, and 25.3 M(-1).  相似文献   

5.
We manipulate lipid bilayer surface charge and gauge its influence on gramicidin A channel conductance by two strategies: titration of the lipid charge through bulk solution pH and dilution of a charged lipid by neutral. Using diphytanoyl phosphatidylserine (PS) bilayers with CsCl aqueous solutions, we show that the effects of lipid charge titration on channel conductance are masked 1) by conductance saturation with Cs+ ions in the neutral pH range and 2) by increased proton concentration when the bathing solution pH is less than 3. A smeared charge model permits us to separate different contributions to the channel conductance and to introduce a new method for "bilayer pKa" determination. We use the Gouy-Chapman expression for the charged surface potential to obtain equilibria of protons and cations with lipid charges. To calculate cation concentration at the channel mouth, we compare different models for the ion distribution, exact and linearized forms of the planar Poisson-Boltzmann equation, as well as the construction of a "Gibbs dividing surface" between salt bath and charged membrane. All approximations yield the intrinsic pKain of PS lipid in 0.1 M CsCl to be in the range 2.5-3.0. By diluting PS surface charge at a fixed pH with admixed neutral diphytanoyl phosphatidylcholine (PC), we obtain a conductance decrease in magnitude greater than expected from the electrostatic model. This observation is in accord with the different conductance saturation values for PS and PC lipids reported earlier (, Biochim. Biophys. Acta. 552:369-378) and verified in the present work for solvent-free membranes. In addition to electrostatic effects of surface charge, gramicidin A channel conductance is also influenced by lipid-dependent structural factors.  相似文献   

6.
For a large smooth particle with charges at the surface, the electrophoretic mobility is proportional to the zeta potential, which is related to the charge density by the Gouy-Chapman theory of the diffuse double layer. This classical model adequately describes the dependence of the electrophoretic mobility of phospholipid vesicles on charge density and salt concentration, but it is not applicable to most biological cells, for which new theoretical models have been developed. We tested these new models experimentally by measuring the effect of UO2++ on the electrophoretic mobility of model membranes and human erythrocytes in 0.15 M NaCl at pH 5. We used UO2++ for these studies because it should adsorb specifically to the bilayer surface of the erythrocyte and should not change the density of fixed charges in the glycocalyx. Our experiments demonstrate that it forms high-affinity complexes with the phosphate groups of several phospholipids in a bilayer but does not bind significantly to sialic acid residues. As observed previously, UO2++ adsorbs strongly to egg phosphatidylcholine (PC) vesicles: 0.1 mM UO2++ changes the zeta potential of PC vesicles from 0 to +40 mV. It also has a large effect on the electrophoretic mobility of vesicles formed from mixtures of PC and the negative phospholipid phosphatidylserine (PS): 0.1 mM UO2++ changes the zeta potential of PC/PS vesicles (10 mol % PS) from -13 to +37 mV. In contrast, UO2++ has only a small effect on the electrophoretic mobility of either vesicles formed from mixtures of PC and the negative ganglioside GM1 or erythrocytes: 0.1 mM UO2++ changes the apparent zeta potential of PC/GM1 vesicles (17 mol % GM1) from -11 to +5 mV and the apparent zeta potential of erythrocytes from -12 to -4 mV. The new theoretical models suggest why UO2++ has a small effect on PC/GM1 vesicles and erythrocytes. First, large groups (e.g., sugar moieties) protruding from the surface of the PC/GM1 vesicles and erythrocytes exert hydrodynamic drag. Second, charges at the surface of a particle (e.g., adsorbed UO2++) exert a smaller effect on the mobility than charges located some distance from the surface (e.g., sialic acid residues).  相似文献   

7.
The energetics of lipid vesicle-vesicle aggregation in dextran (36,000 mol wt) solutions have been studied with the use of micromechanical experiments. The affinities (free energy reduction per unit area of contact) for vesicle-vesicle aggregation were determined from measurements of the tension induced in an initially flaccid vesicle membrane as it adhered to another vesicle. The experiments involved controlled aggregation of single vesicles by the following procedure: two giant (approximately 20 micron diam) vesicles were selected from a chamber on the microscope stage that contained the vesicle suspension and transferred to a second chamber that contained a dextran (36,000 mol wt) salt solution (120 mM); the vesicles were then maneuvered into position for contact. One vesicle was aspirated with sufficient suction pressure to create a rigid sphere outside the pipette; the other vesicle was allowed to spread over the rigid vesicle surface. The aggregation potential (affinity) was derived from the membrane tension vs. contact area. Vesicles were formed from mixture of egg lecithin (PC) and phosphatidylserine (PS). For vesicles with a PC/PS ratio of 10:1, the affinity showed a linear increase with concentration of dextran; the values were on the order of 10(-1) ergs/cm2 at 10% by weight in grams. Similarly, pure PC vesicle aggregation was characterized by an affinity value of 1.5 X 10(-1) ergs/cm2 in 10% dextran by weight in grams. In 10% by weight in grams solutions of dextran, the free energy potential for vesicle aggregation decreased as the surface charge (PS) was increased; the affinity extrapolated to zero at a PC/PS ratio of 2:1. When adherent vesicle pairs were transferred into a dextran-free buffer, the vesicles did not spontaneously separate. They maintained adhesive contact until forceably separated, after which they would not read here. Thus, it appears that dextran forms a "cross-bridge" between the vesicle surfaces.  相似文献   

8.
D Rapaport  M Danin  E Gazit  Y Shai 《Biochemistry》1992,31(37):8868-8875
A 24-amino acid peptide corresponding to the S4 segment of the sodium channel was synthesized. In order to perform fluorescence energy transfer measurements and to monitor the interaction of the peptide with lipid vesicles, the peptide was selectively labeled with fluorescence probes at either its N- or C-terminal amino acids. The fluorescent emission spectra of 7-nitrobenz-2-oxa-1,3-diazol-4- yl-(NBD-)labeled analogues displayed blue shifts upon binding to small unilamellar vesicles (SUV), reflecting the relocation of the fluorescent probe to an environment of increased apolarity. The results revealed that both the N- and C-terminus of the S4 segment are located within the lipid bilayer. Titration of solutions containing NBD-labeled peptides with SUV was used to generate binding isotherms, from which surface partition constants, in the range of 10(4) M-1, were derived. The shape of the binding isotherms as well as fluorescence energy transfer measurements suggest that aggregation of peptide monomers within the membrane readily occurs in acidic but not in zwitterionic vesicles. Furthermore, the results provide good correlation between the incidence of aggregation in PC/PS vesicles and the ability of the peptides to permeate the vesicle's membrane. However, a transmembrane diffusion potential had no detectable effect on the location of the peptide within the lipid bilayer or on its aggregation state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Permeability enhancement of acidic lipid small unilamellar vesicles (dioleoylphosphatidylglycerol, DOPG; dipalmitoylphosphatidylglycerol, DPPG; bovine brain phosphatidylserine, PS) induced by magainins 1 and 2, basic antimicrobial peptides from Xenopus skin, was investigated at 30 degrees C based on leakage of calcein, an entrapped fluorescent marker. Both the peptide concentration and the lipid concentration dependencies of the leakage rate were analyzed to obtain the binding isotherms of the peptides to the membranes and the 'membrane-perturbing activities' of the membrane-bound peptides. For both peptides, the binding affinity was in the order DOPG greater than DPPG greater than PS, which coincided with the zeta potential order (-54, -39, and -9 mV, respectively). An increase in salt concentration of the medium reduced binding and leakage. Electrostatic interactions play a crucial role in the binding process. On the other hand, the membrane-perturbing activity is regulated by membrane fluidity: The fluid membranes (DOPG and PS) were leakier. A circular dichroism study suggested that at least 14 positively charged residues in the N-terminal regions can form amphiphilic helices which interact with the membranes. An even stronger binding of magainin 2 can be explained in terms of more positive charges in its N-terminal region. A tentative model for the magainin-lipid interactions is hypothesized.  相似文献   

10.
Recently the pH gradient evoked by a K+ diffusion potential was shown to translocate a synthetic monobasic amphipathic hexapeptide across the bilayer of lipid vesicles (De Kroon, A.I.P.M., Vogt, B., Van 't Hof, R., De Kruijff, B. and De Gier, J. (1991) Biophys. J. 60, in press). Here this observation is extended by studying the effect of a membrane potential on a set of bioactive peptides. The panel of peptides comprises the toxin mastoparan X, a tryptophan-containing analogue of the presequence of the mitochondrial protein cytochrome oxidase subunit IV (preCoxIV(1-25)W18), and the regulatory peptides ACTH(1-24), alpha-MSH, ACTH(1-10), dynorphin A, bombesin, and LHRH. The interaction of these peptides with phospholipid vesicles has been measured using the intrinsic tryptophan residue as fluorescent probe. In the absence of a K+ diffusion potential only mastoparan X and the presequence show considerable binding to vesicles consisting of phosphatidylcholine (PC). In contrast, under these conditions all peptides display affinity for vesicles consisting of the acidic phospholipid cardiolipin (CL), the extent of which depends on the net positive charge of the peptide. Application of a K+ diffusion potential to large unilamellar vesicles (LUV) consisting of PC results in a time dependent tryptophan fluorescence increase for mastoparan X, which is accelerated upon incorporating increasing amounts of CL into the LUV. A similar fluorescence increase in response to a K+ diffusion potential was observed for the above model peptide. Yet the mechanism resulting in the fluorescence increase of mastoparan X is completely different from that of the hexapeptide. Binding experiments indicate that a membrane potential-induced enhanced binding of the peptide to the outer surface of the vesicles contributes to the fluorescence increase. PreCoxIV(1-25)W18, dynorphin A, and ACTH(1-24) show fluorescence responses upon applying a membrane potential that are consistent with that of mastoparan X, whereas the other peptides tested do not respond up to a LUV CL content of 50%. The results tentatively suggest that the membrane potential only affects a peptide when it has the ability to adopt a stable membrane bound conformation.  相似文献   

11.
The free energy potential (affinity) for aggregation of human red blood cells and lipid vesicles in Dextran solutions and blood plasma has been quantitated by measuring to what extent a vesicle is encapsulated by the red cell surface. The free energy reduction per unit area of contact formation (affinity) was computed from the observation of the fractional extent of encapsulation at equilibrium with the use of a relation based on the elastic compliance of the red cell membrane as it is deformed to adhere to the vesicle surface. Micromanipulation methods were used to select and transfer single lipid vesicles (2-3 X 10(-4) cm diameter) from a chamber that contained the vesicle suspension to a separate chamber on the microscope stage that contained red cells in an EDTA buffer with Dextran or whole plasma. The vesicle and a red cell were maneuvered into close proximity and contact allowed to take place without forcing the cells together. To evaluate the effects of surface charge density and steric interactions on aggregation, vesicles were made from mixtures of egg phosphatidylcholine (PC) and bovine phosphatidylserine (PS) over a range of mole ratios (PC/PS)from (1:0) to (1:1); the vesicles were formed by rehydration in buffer. The Dextran solutions were made with a sharp-cut fraction of 36,500 MW in a concentration range of 0-10% by weight in grams (wt/wt).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The interaction of interrelated model peptides with model membranes has been studied by techniques based on tryptophan fluorescence. The peptides used are derivatives of the sequence H-Ala-Met-Leu-Trp-Ala-OH, which was designed for this purpose. Several modifications yielded a set of 13 penta- and hexapeptides varying in net charge, hydrophobicity, charge distribution, and the intramolecular position of the tryptophan residue with respect to the charge(s). The affinity of these peptides for small unilamellar vesicles (SUV) consisting of zwitterionic egg phosphatidylcholine (eggPC) and negatively charged beef heart cardiolipin (bhCL) has been investigated in a comparative way. The criteria for affinity comprise (1) intrinsic fluorescence changes upon titration of the peptides with the lipid vesicles, (2) reduced accessibility of the peptides to aqueous quenchers of tryptophan fluorescence (I- and acrylamide) in the presence of lipid, and (3) exposure to membrane-incorporated fluorescence quenchers, brominated phosphatidylcholines (BrPC). Application of BrPC brominated at different positions along the acyl chains provided information on the membrane topology of the peptides. With respect to the extent of affinity for zwitterionic membranes, the overall hydrophobicity of the peptides is the main determinant. A comparison of the affinity for PC of equally hydrophobic peptides carrying either a single positive or negative charge reveals preferential interaction of the cationic peptide. Both hydrophobic and electrostatic interactions determine the affinity of positively charged mono- and divalent peptides for CL vesicles. The distribution of the charged moieties in divalent positively charged peptides, either both at one end of the molecule or one at each end, has little influence on the affinity of these peptides for CL but does affect the extent of exposure to BrPC. Upon decreasing the surface charge density of the vesicles by diluting CL with increasing amounts of PC, both types of peptides show different behavior. The position of the tryptophan relative to the charged moiety in the peptide molecule is shown to affect the fluorescent properties upon interaction with vesicles. Concerning the membrane topology, all peptides adopt a localization near the membrane surface, with the neutral peptides inserting slightly deeper into the bilayer than the charged peptides. The results allow a comparative analysis of the factors determining the extents and modes of lipid-model peptide interaction; in addition, the validity of the methods applied is discussed.  相似文献   

13.
When Gd3+, a trivalent lanthanide, binds phospholipids with a high affinity, it elicits strong electrostatic effects on the surface of the lipid bilayer. Two experimental methods were applied to monitor the changes in the boundary and surface potentials induced by Gd3+ adsorption on liposomes and planar lipid bilayer membranes (BLM) made from phosphatidylserine (PS), phosphatidylcholine (PC) and their mixtures. The membrane surface charge density was changed by either varying the PS/PC ratio or by changing the degree of PS headgroup ionization in the range of pH between 2.5 and 7.5. The Gouy-Chapman-Stern (GCS) theory combined with the condition of mass balance in the experimental cell was used for quantitative treatment of ion adsorption and related changes in the diffuse part of the electrical double layer (surface potential). Data obtained using microelectrophoresis of liposome suspensions were well described within the framework of the modified GCS theory with constants of 5.10(4) and 10(3) M-1 for Gd3+ association with PS and PC, respectively (Yu. A. Ermakov, A. Z. Averbakh, and S. I. Sukharev, Biol. Membrany 14:434-445 (1997) (in Russian)). The intramembrane field compensation (IFC) technique used to study Gd3+ adsorption on planar lipid bilayers by monitoring the entire boundary potential gave completely different results. An observed drastic difference (approximately 140 mV) between the changes of boundary and surface potential was interpreted as the change in the dipole potential induced by binding of Gd3+. The magnitude of the surface dipole increased with the concentration of PS in PS/PC mixtures and became significant at most negative surface charges (more than 80% of PS in the mixture) and strongly correlated with the degree of PS ionization at different pH. The nature of structural changes at the membrane/water interface induced by Gd(3+)-PS interaction and possible lipid clusterization are discussed in the context of their biological importance.  相似文献   

14.
M Rebecchi  A Peterson  S McLaughlin 《Biochemistry》1992,31(51):12742-12747
We studied the binding of phosphoinositide-specific phospholipase C-delta 1 (PLC-delta) to vesicles containing the negatively charged phospholipids phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylserine (PS). PLC-delta did not bind significantly to large unilamellar vesicles formed from the zwitterionic lipid phosphatidylcholine (PC) but bound strongly to vesicles formed from mixtures of PC and PIP2. The apparent association constant for the putative 1:1 complex formed between PLC-delta and PIP2 was Ka congruent to 10(5) M-1. The binding strength increased further (Ka congruent to 10(6) M-1) when the vesicles also contained 30% PS. High-affinity binding of PLC-delta to PIP2 did not require Ca2+. PLC-delta bound only weakly to vesicles formed from mixtures of PC and either PS or phosphatidylinositol (PI); binding increased as the mole fraction of acidic lipid in the vesicles increased. We also studied the membrane binding of a small basic peptide that corresponds to a conserved region of PLC. Like PLC-delta, the peptide bound weakly to vesicles containing monovalent negatively charged lipids; unlike PLC-delta, it did not bind strongly to vesicles containing PIP2. Our data suggest that a significant fraction of the PLC-delta in a cell could be bound to PIP2 on the cytoplasmic surface of the plasma membrane.  相似文献   

15.
Magainins and other antimicrobial peptides increase ion flux across the membrane. They may do this by forming some type of pore or by perturbing lipid organization due to peptide lying on the bilayer surface. In order to determine if magainins perturb the lipid sufficiently to permeabilize the bilayer, their effect on the motion of fatty acid and lipid spin labels in phosphatidylcholine/phosphatidylglycerol (PC/PG) lipid vesicles was determined. Their effect was compared to two synthetic peptides, 18L and Ac-18A-NH(2), designed to mimic the naturally occurring classes of lytic (class L) and apolipoprotein (class A) amphipathic helices, respectively. We show that although magainins and 18L both had significant effects on lipid chain order, much greater than Ac-18A-NH(2), there was no correlation between these effects and the relative ability of these three peptide classes to permeabilize PC/PG vesicles in the order magainins=Ac-18A-NH(2) > 18L. This suggests that the perturbing effects of magainins on lipid chain order at permeabilizing concentrations are not directly responsible for the increased leakage of vesicle contents. The greater ability of the magainins to permeabilize PC/PG vesicles relative to 18L is thus more likely due to formation of some type of pore by magainins. The greater ability of Ac-18A-NH(2) relative to 18L to permeabilize PC/PG vesicles despite its lack of disordering effect must be due to its ability to cause membrane fragmentation. Effects of these peptides on other lipids indicated that the mechanism by which they permeabilize lipid bilayers depends both on the peptide and on the lipid composition of the vesicles.  相似文献   

16.
Phospholipase C-zeta (PLC-zeta) is a sperm-specific enzyme that initiates the Ca2+ oscillations in mammalian eggs that activate embryo development. It shares considerable sequence homology with PLC-delta1, but lacks the PH domain that anchors PLC-delta1 to phosphatidylinositol 4,5-bisphosphate, PIP2. Thus it is unclear how PLC-zeta interacts with membranes. The linker region between the X and Y catalytic domains of PLC-zeta, however, contains a cluster of basic residues not present in PLC-delta1. Application of electrostatic theory to a homology model of PLC-zeta suggests this basic cluster could interact with acidic lipids. We measured the binding of catalytically competent mouse PLC-zeta to phospholipid vesicles: for 2:1 phosphatidylcholine/phosphatidylserine (PC/PS) vesicles, the molar partition coefficient, K, is too weak to be of physiological significance. Incorporating 1% PIP2 into the 2:1 PC/PS vesicles increases K about 10-fold, to 5x10(3) M-1, a biologically relevant value. Expressed fragments corresponding to the PLC-zeta X-Y linker region also bind with higher affinity to polyvalent than monovalent phosphoinositides on nitrocellulose filters. A peptide corresponding to the basic cluster (charge=+7) within the linker region, PLC-zeta-(374-385), binds to PC/PS vesicles with higher affinity than PLC-zeta, but its binding is less sensitive to incorporating PIP2. The acidic residues flanking this basic cluster in PLC-zeta may account for both these phenomena. FRET experiments suggest the basic cluster could not only anchor the protein to the membrane, but also enhance the local concentration of PIP2 adjacent to the catalytic domain.  相似文献   

17.
We have investigated the binding of a new dansylcadaverine derivative of substance P (DNC-SP) with negatively charged small unilamellar vesicles composed of a mixture of phosphatidylcholine (PC) and either phosphatidylglycerol (PG) or phosphatidylserine (PS) using fluorescence spectroscopic techniques. The changes in fluorescence properties were used to obtain association isotherms at variable membrane negative charges and at different ionic strengths. The experimental association isotherms were analyzed using two binding approaches: (i) the Langmuir adsorption isotherm and the partition equilibrium model, that neglect the activity coefficients; and (ii) the partition equilibrium model combined with the Gouy-Chapman formalism that considers electrostatic effects. A consistent quantitative analysis of each DNC-SP binding curve at different lipid composition was achieved by means of the Gouy-Chapman approach using a peptide effective interfacial charge (v) value of (0.95 +/- 0.02), which is lower than the physical charge of the peptide. For PC/PG membranes, the partition equilibrium constant were 7.8 x 10(3) M(-1) (9/1, mol/mol) and 6.9 x 10(3) M(-1) (7/3, mol/mol), whereas for PC/PS membranes an average value of 6.8 x 10(3) M(-1) was estimated. These partition equilibrium constants were similar to those obtained for the interaction of DNC-SP with neutral PC membranes (4.9 x 10(3) M(-1)), as theoretically expected. We demonstrate that the v parameter is a determinant factor to obtain a unique value of the binding constant independently of the surface charge density of the vesicles. Also, the potential of fluorescent dansylated SP analogue in studies involving interactions with cell membranes is discussed.  相似文献   

18.
Antimicrobial peptides (AMPs) have been an area of great interest, due to the high selectivity of these molecules toward bacterial targets over host cells and the limited development of bacterial resistance to these molecules throughout evolution. Previous work showed that when Histidine was incorporated into the peptide C18G it lost antimicrobial activity. The role of pH on activity and biophysical properties of the peptide was investigated to explain this phenomenon. Minimal inhibitory concentration (MIC) results demonstrated that decreased media pH increased antimicrobial activity. Trichloroethanol (TCE) quenching and red-edge excitation spectroscopy (REES) showed a clear pH dependence on peptide aggregation in solution. Trp fluorescence was used to monitor binding to lipid vesicles and demonstrated the peptide binds to anionic bilayers at all pH values tested, however, binding to zwitterionic bilayers was enhanced at pH 7 and 8 (above the His pKa). Dual Quencher Analysis (DQA) confirmed the peptide inserted more deeply in PC:PG and PE:PG membranes, but could insert into PC bilayers at pH conditions above the His pKa. Bacterial membrane permeabilization assays which showed enhanced membrane permeabilization at pH 5 and 6 but vesicle leakage assays indicate enhanced permeabilization of PC and PC:PG bilayers at neutral pH. The results indicate the ionization of the His side chain affects the aggregation state of the peptide in solution and the conformation the peptide adopts when bound to bilayers, but there are likely more subtle influences of lipid composition and properties that impact the ability of the peptide to form pores in membranes.  相似文献   

19.
Site-directed spin labeling is used to determine the orientation and depth of insertion of the second C2 domain from synaptotagmin I (C2B) into membrane vesicles composed of phosphatidylcholine (PC) and phosphatidylserine (PS). EPR line shapes of spin-labeled mutants located with the Ca(2+)-binding loops of C2B broaden in the presence of Ca(2+) and PC/PS vesicles, indicating that these loops undergo a Ca(2+)-dependent insertion into the membrane interface. Power saturation of the EPR spectra provides a position for each spin-labeled site along the bilayer normal, and these EPR-derived distance constraints, along with a high-resolution structure of the C2B domain, are used to generate a model for the domain orientation and position at the membrane interface. Our data show that the isolated C2B domain from synaptotagmin I penetrates PC/PS membranes, and that the backbone of Ca(2+)-binding loops 1 and 3 is inserted below the level of a plane defined by the lipid phosphates. The side chains of several loop residues are within the bilayer interior, and both Ca(2+)-binding sites are positioned near a plane defined by the lipid phosphates. A Tb(3+)-based fluorescence assay is used to compare the membrane affinity of the C2B domain to that of the first synaptotagmin C2 domain (C2A). Both C2A and C2B bind PC/PS (75:25) membrane vesicles with a micromolar lipid affinity in the presence of metal ion. These results indicate that C2A and C2B have a similar membrane affinity and position when bound to PC/PS (75:25) membrane vesicles. EPR spectroscopy indicates that the C2B domain has different interactions with PC/PS membranes containing 1 mol % phosphatidylinositol 4,5-bisphosphate.  相似文献   

20.
Purified sodium channels incorporated into phosphatidylcholine (PC) vesicles mediate neurotoxin-activated 22Na+ influx but do not bind the alpha-scorpion toxin from Leiurus quinquestriatus (LqTx) with high affinity. Addition of phosphatidylethanolamine (PE) or phosphatidylserine to the reconstitution mixture restores high affinity LqTx binding with KD = 1.9 nM for PC/PE vesicles at -90 mV and 36 degrees C in sucrose-substituted medium. Other lipids tested were markedly less effective. The binding of LqTx in vesicles of PC/PE (65:35) is sensitive to both the membrane potential formed by sodium gradients across the reconstituted vesicle membrane and the cation concentration in the extravesicular medium. Binding of LqTx is reduced 3- to 4-fold upon depolarization to 0 mV from -50 to -60 mV in experiments in which [Na+]out/[Na+]in is varied by changing [Na+]in or [Na+]out at constant extravesicular ionic strength. It is concluded that the purified sodium channel contains the receptor site for LqTx in functional form and that restoration of high affinity, voltage-dependent binding of LqTx by the purified sodium channel requires an appropriate ratio of PC to PE and/or phosphatidylserine in the vesicle membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号