首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The small-angle X-ray scattering technique was used to characterize the overall structural change as well as the state of aggregation of troponin C upon binding various amount of Ca2+ ions: in the Ca2+-free state and at pCa 6.5 and 4.0. Under these conditions, the forward scattering intensities of troponin C are not much different from each other: i.e., they coincide within 4%. From these intensities, the Ca2+-facilitated dimerization of troponin C was not verified, and no appreciable aggregation of troponin C molecules was detected below pCa 4.0. Thus, the small-angle X-ray scattering profiles from troponin C solutions were analyzed assuming a monomeric molecule. The radii of gyration of troponin C were 27.8 +/- 0.3 A, 23.8 +/- 0.2 A, and 22.6 +/- 0.1 A for the Ca2+-free state and at pCa 6.5 and 4.0, respectively. The maximum dimension of the molecule decreases from 111 to 98 A with increasing Ca2+ concentration. These results indicate that the troponin C molecule shrinks remarkably as Ca2+ ions bind to the high affinity sites of the molecule. Ca2+ binding to the low affinity sites, on the other hand, leads to a less pronounced change. Following the interpretation of scattering from the dumbbell-shaped structure (Fujisawa, T., Ueki, T., Inoko, Y., & Kataoka, M. [1987] J. Appl. Cryst. 20, 349-355), the two domains of the molecule move closer to each other. The distance between the centers of the two domains decreases from 46 to 35 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Phosphorylase kinase (PhK), a 1.3-MDa (alphabetagammadelta)(4) hexadecameric complex, is a Ca(2+)-dependent regulatory enzyme in the cascade activation of glycogenolysis. PhK comprises two arched (alphabetagammadelta)(2) octameric lobes that are oriented back-to-back with overall D(2) symmetry and joined by connecting bridges. From chemical cross-linking and electron microscopy, it is known that the binding of Ca(2+) by PhK perturbs the structure of all its subunits and promotes redistribution of density throughout both its lobes and bridges; however, little is known concerning the interrelationship of these effects. To measure structural changes induced by Ca(2+) in the PhK complex in solution, small-angle X-ray scattering was performed on nonactivated and Ca(2+)-activated PhK. Although the overall dimensions of the complex were not affected by Ca(2+), the cation did promote a shift in the distribution of the scattering density within the hydrated volume occupied by the PhK molecule, indicating a Ca(2+)-induced conformational change. Computer-generated models, based on elements of the known structure of PhK from electron microscopy, were constructed to aid in the interpretation of the scattering data. Models containing two ellipsoids and four cylinders to represent, respectively, the lobes and bridges of the PhK complex provided theoretical scattering profiles that accurately fit the experimental data. Structural differences between the models representing the nonactivated and Ca(2+)-activated conformers of PhK are consistent with Ca(2+)-induced conformational changes in both the lobes and the interlobal bridges.  相似文献   

3.
A small-angle X-ray scattering study on troponin C showed that two domains of the molecule move closer to each other and the molecule shrinks along its long axis upon Ca2+ binding in the absence of Mg2+ ions (Fujisawa, T., Ueki, T., & Iida S. (1988) J. Biochem. 105, 377-383). When Mg2+ ions bind to troponin-C, the radius of gyration changes from 27.8 to 24.3 A and the average radius of gyration of the two domains is estimated to be 15.1 A. These radii indicate that the distance between the centers of the two domains is 38.1 A. Such a change is analogous to the previous result for troponin C with two Ca2+ ions bound at the high-affinity sites. Thus, the structural behavior of troponin C molecule is essentially the same when Ca2+/Mg2+ ions bind to its high-affinity sites. On the other hand, the effect of Ca2+ binding to the low-affinity sites in the presence of Mg2+ ions is quite different from the previous result. The binding of Ca2+ ions causes a dimerization of troponin C molecules with an apparent constant of 511 M-1. Such a characteristic behavior, implying the occurrence of a surface property change, may be related to the physiological role of troponin C molecule in the muscle. The scattering experiments on the tryptic fragments of troponin C also had interesting and important results: the C-domain shrinks, with the radius of gyration changing from 17.0 to 14.9 A while the N-domain swells from 13.9 to 15.0 A upon Ca2+ binding. Such an opposite change is consistent with the results of circular dichroism and spectroscopic studies of the domains.  相似文献   

4.
In this paper we report 8-quinolineboronic acid as a novel type of fluorescent probe for carbohydrates. This boronic acid responds to the binding of a carbohydrate with over 40-fold increases in fluorescence intensity and shows optimal fluorescence change at physiological pH in aqueous solution.  相似文献   

5.
Mercier P  Li MX  Sykes BD 《Biochemistry》2000,39(11):2902-2911
The interaction between the calcium binding and inhibitory components of troponin is central to the regulation of muscle contraction. In this work, two-dimensional heteronuclear single-quantum coherence nuclear magnetic resonance (2D-?1H,15N?-HSQC NMR) spectroscopy was used to determine the stoichiometry, affinity, and mechanisms for binding of Ca2+ and two synthetic TnI peptides [TnI1-40 (or Rp40) and TnI96-115] to the isolated C-domain of skeletal troponin C (CTnC). The Ca2+ titration revealed that 2 equiv of Ca2+ binds to sites III and IV of CTnC with strong positive cooperativity and high affinity [dissociation constant (KD) 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号