首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five protein kinases were used to study the phosphorylation pattern of the purified skeletal muscle receptor for calcium-channel blockers (CaCB). cAMP kinase, cGMP kinase, protein kinase C, calmodulin kinase II and casein kinase II phosphorylated the 165-kDa and the 55-kDa proteins of the purified CaCB receptor. The 130/28-kDa and the 32-kDa protein of the receptor are not phosphorylated by these protein kinases. Among these protein kinases only cAMP kinase phosphorylated the 165-kDa subunit with 2-3-fold higher initial rate than the 55-kDa subunit. Casein kinase II phosphorylated the 165-kDa and the 55-kDa protein of the receptor with comparable rates. cGMP kinase, protein kinase C and calmodulin kinase II phosphorylated preferentially the 55-kDa protein. The 55-kDa protein is phosphorylated 50 times faster by cGMP kinase and protein kinase C than by calmodulin kinase II or casein kinase II and about 10 times faster by these enzymes than by cAMP kinase. Two-dimensional peptide maps of the 165-kDa subunit yielded a total of 11 phosphopeptides. Four or five peptides are phosphorylated specifically by cAMP kinase, cGMP kinase, casein kinase II and protein kinase C, whereas the other peptides are modified by several kinases. The same kinases phosphorylate 11 peptides in the 55-kDa subunit. Again, some of these peptides are modified specifically by each kinase. These results suggest that the 165-kDa and the 55-kDa subunit contain specific phosphorylation sites for cAMP kinase, cGMP kinase, casein kinase II and protein kinase C. Phosphorylation of these sites may be relevant for the in vivo function of the CaCB receptor.  相似文献   

2.
The atrial natriuretic peptide (ANP) stimulates cGMP production and protein phosphorylation in a particulate fraction of cultured rat aortic smooth muscle cells. Three proteins of 225, 132, and 11 kDa were specifically phosphorylated in response to ANP treatment, addition of cGMP (5 nM), or addition of purified cGMP-dependent protein kinase. The cAMP-dependent protein kinase inhibitor had no effect on the cGMP-stimulated phosphorylation of the three proteins but inhibited cAMP-dependent phosphorylation of a 17-kDa protein. These results demonstrate that the particulate cGMP-dependent protein kinase mediates the phosphorylation of the 225-, 132-, and 11-kDa proteins. The 11-kDa protein is phospholamban based on the characteristic shift in apparent Mr from 11,000 to 27,000 on heating at 37 degrees C rather than boiling prior to electrophoresis. ANP (1 microM) increased the cGMP concentration approximately 4-fold in the particulate fractions, from 4.3 to 17.7 nM, as well as the phosphorylation of the 225-, 132-, and 11-kDa proteins. In contrast, the biologically inactive form of ANP, carboxymethylated ANP (1 microM), did not stimulate phosphorylation of any proteins nor did the unrelated peptide hormone, angiotensin II (1 microM). These results demonstrate the presence of the cGMP-mediated ANP signal transduction pathway in a particulate fraction of smooth muscle cells and the specific phosphorylation of three proteins including phospholamban, which may be involved in ANP-dependent relaxation of smooth muscle.  相似文献   

3.
Conditions for superoxide anion (O2-) production were examined in guinea pig polymorphonuclear leukocytes (PMNL). When PMNL were suspended in the hypotonic medium, O2- production was significantly enhanced by concurrent treatment with low concentrations of 1-oleoyl-2-acetylglycerol (OAG), a cell-permeable protein kinase C activator. Such hypotonicity or OAG alone had little effect on the production. Other protein kinase C activators also markedly enhanced O2- production in combination with hypotonicity, but not in the isotonic medium. Protein kinase C inhibitors, H-7 and staurosporine, dose-dependently inhibited the production. These observations indicate that protein kinase C participates in such synergistic O2- production with hypotonicity. Phosphorylation of 46-kDa protein(s), which was commonly enhanced in paralleled with an activation of NADPH oxidase in guinea pig PMNL, was increased by treatment with 10 microM OAG, but the phosphorylation was little altered by hypotonic treatment. Intracellular calcium concentration, arachidonate release, and 1,2-diacylglycerol and phosphoinositide concentrations were slightly altered by hypotonic treatment. A change in phosphatidate (PA) production in PMNL was induced by hypotonic treatment either by itself or in combination with OAG treatment. These results suggest that the combination of cell membrane changes by hypotonic treatment accompanied by the increase in PA and 46-kDa protein phosphorylation by protein kinase C provides the conditions required for a marked increase in O2- production. Hypotonicity may be a good tool for studying the mechanism of priming in the activation of NADPH oxidase.  相似文献   

4.
Protein kinase C activity was partially purified from tick salivary glands by fast protein liquid chromatography anion-exchange chromatography. Enzyme activity was stimulated by Ca2+, phosphatidylserine, and diacylglycerol with the highest activity observed in the presence of all three modulators. Enzyme activity was inhibited by a synthetic pseudosubstrate peptide with an amino acid sequence resembling the protein kinase C substrate phosphorylation site. The protein kinase C activator, 1-oleoyl-2-acetyl-sn-glycerol (OAG), when added to whole in vitro salivary glands previously prelabeled with 32P, stimulated the phosphorylation of salivary gland proteins. Activators of protein kinase C (phorbol ester or OAG) did not stimulate fluid secretion by isolated tick salivary glands. OAG and phorbol ester had only minimal affects on the ability of dopamine to stimulate secretion by isolated salivary glands and dopamine's ability to increase salivary gland cyclic AMP.  相似文献   

5.
The phenolic antioxidant 2,6-bis(1,1-dimethyl ethyl)-4-methylphenol (BHT) evokes a transient phosphorylation of two platelet proteins of Mr 20,000 and 47,000 that are well-known substrates of protein kinase C (PKC) and, similarly to phorbol esters, a slight but persistent phosphorylation of a protein of Mr 26,000. These effects are observed both in the presence and in the absence of extracellular calcium, but are abolished in the presence of the protein kinase C inhibitor staurosporine. The phosphorylation of the 47 kDa protein takes place mostly at the serine and, to a lesser extent, at threonine residues. BHT induces an increased binding of tritiated phorbol dibutyrate to platelets indicating a PKC translocation from cytosol to plasma membrane. Addition of BHT (20 microM) a few min prior to thrombin causes inhibition of both agonist-evoked protein phosphorylation and increase in the Ca2+ concentration, the latter inhibition being counteracted by staurosporine. The inhibitory effect lasts for several minutes even after removal of BHT from the cellular suspending medium. Similar results are obtained with nordihydroguaiaretic acid, whereas 2- and 3-tert-butyl-4-methoxyphenol (BHA) produce only slight effects. BHT activates the protein kinase C purified from pig brain in a concentration-dependent manner (up to 200 microM), whereas it does not affect the activity of other purified protein kinases such as type 1 and 2 casein kinases, type II A, II B and III tyrosine protein kinases from rat spleen and the catalytic subunit of cyclic AMP-dependent protein kinase. It is concluded that, similarly to diacylglycerols and phorbol esters, these phenolic antioxidants activate the protein kinase C, which in turn desensitizes platelets towards subsequent phospholipase C activation.  相似文献   

6.
The regulatory subunit of the type I cAMP-dependent protein kinase (Rt) serves as a substrate for the phosphotransferase reaction catalyzed by cGMP-dependent protein kinase (Km = 2.2 microM). The reaction is stimulated by cGMP when RI . cAMP is the substrate, but not when nucleotide-free RI is used. The cGMP-dependent protein kinase catalyzes the incorporation of 2 mol of phosphate/mol of RI dimer in the presence of cAMP and a self-phosphorylation reaction to the extent of 4 mol of phosphate/mol of enzyme dimer. In the absence of cAMP, RI is a competitive inhibitor of the phosphorylation of histone H2B (Ki = 0.25 microM) and of the synthetic peptide substrate Leu-Arg-Arg-Ala-Ser-Leu-Gly (Ki = 0.15 microM) by the cGMP-dependent enzyme. Nucleotide-free RI also inhibits the intramolecular self-phosphorylation of cGMP-dependent protein kinase. The inhibition of the phosphorylation reactions are reversed by cAMP. The catalytic subunit of cAMP-dependent protein kinase does not catalyze the phosphorylation of RIand does not significantly alter the ability of RI to serve as a substrate or an inhibitor of cGMP-dependent protein kinase. These observations are consistent with the concept that the cGMP- and cAMP-dependent protein kinases are closely related proteins whose functional domains may interact.  相似文献   

7.
The cGMP-dependent protein kinases (PKG) are emerging as important components of mainstream signal transduction pathways. Nitric oxide-induced cGMP formation by stimulation of soluble guanylate cyclase is generally accepted as being the most widespread mechanism underlying PKG activation. In the present study, PKG was found to be a target for phorbol 12-myristate 13-acetate (PMA)-responsive protein kinase C (PKC). PKG1alpha became phosphorylated in HEK-293 cells stimulated with PMA and also in vitro using purified components. PKC-dependent phosphorylation was found to activate PKG as measured by phosphorylation of vasodilator-stimulated phosphoprotein, and by in vitro kinase assays. Although there are 11 potential PKC substrate recognition sites in PKG1alpha, threonine 58 was examined due to its proximity to the pseudosubstrate domain. Antibodies generated against the phosphorylated form of this region were used to demonstrate phosphorylation in response to PMA treatment of the cells with kinetics similar to vasodilator-stimulated phosphoprotein phosphorylation. A phospho-mimetic mutation at this site (T58E) generated a partially activated PKG that was more sensitive to cGMP levels. A phospho-null mutation (T58A) revealed that this residue is important but not sufficient for PKG activation by PKC. Taken together, these findings outline a novel signal transduction pathway that links PKC stimulation with cyclic nucleotide-independent activation of PKG.  相似文献   

8.
Phosphorylation of rhodopsin by protein kinase C in vitro   总被引:3,自引:0,他引:3  
Calium/phospholipid-dependent protein kinase (protein kinase C) was purified from bovine retinae rod outer segments (ROS). In the presence of 0.1-2 microM calcium protein kinase C binds tightly to ROS and phosphorylates rhodopsin in the absence or presence of illumination. This property of protein kinase C contrasts with that of rhodopsin kinase, which in vitro phosphorylates only bleached rhodopsin. Peptide maps of rhodopsin phosphorylated by protein kinase C or rhodopsin kinase were compared using limited Staphylococcus aureus V8 protease digestion or complete tryptic digestion. Phosphorylation sites map to serine and threonine residues on the cytoplasmic carboxylterminal domain of rhodopsin for both kinases. The functional consequence of protein kinase C phosphorylation of rhodopsin was a reduced ability to stimulate the light-dependent rhodopsin activation of [35S]guanosine 5'-O-(thiotriphosphate) binding to transducin, the GTP-binding regulatory protein present in ROS. Properties of the calcium-stimulated interaction of protein kinase C with membranes and in vitro phosphorylation of intrinsic proteins are discussed based upon the findings.  相似文献   

9.
R H Lee  B M Brown  R N Lolley 《Biochemistry》1981,20(26):7532-7538
Protein kinase activity of dark-adapted bovine rod outer segments is partitioned by centrifugation into soluble and membrane-bound fractions. The soluble kinases are separated by DEAE-cellulose chromatography into three peaks of activity, which can be classified by substrate specificity and cyclic nucleotide dependence into two categories. One peak of protein kinase activity has the characteristics reported for rhodopsin kinase (category one); it phosphorylates only bleached rhodopsin, and its activity is not affected by light, exogenous adenosine cyclic 3',5'--monophosphate (cAMP), guanosine cyclic 3',5'-monophosphate (cGMP), or a protein kinase inhibitor from skeletal muscle. Rhodopsin kinase has an apparent molecular weight of 68 000. The second category of kinase includes two peaks of activity which are stimulated severalfold by cAMP or cGMP but not by light. These protein kinases phosphorylate soluble proteins including histones and a protein kinase substrate prepared from rat intestine but not rhodopsin. The two peaks elute from DEAE-cellulose with 0.09 and 0.20 M KCl, suggesting that they are similar respectively to type I and type II cyclic nucleotide dependent protein kinases that have been characterized in other tissues. The activity of type I kinase is variable and much less than that of the type II enzyme; its molecular weight was not determined. The type II protein kinase has an apparent molecular weight of 165 000. This study confirms that different protein kinase enzymes catalyze selectively the phosphorylation of bleached rhodopsin and soluble proteins, and it repudiates the speculation in a previous publication [Farber, D. B., Brown, B. M., & Lolley, R. N. (1979) Biochemistry 18, 370-378] that a single protein kinase might catalyze both phosphorylation reactions.  相似文献   

10.
Keratins, constituent proteins of intermediate filaments of epithelial cells, are phosphoproteins containing phosphoserine and phosphothreonine. We examined the in vitro phosphorylation of keratin filaments by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. When rat liver keratin filaments reconstituted by type I keratin 18 (molecular mass 47 kDa; acidic type) and type II keratin 8 (molecular mass 55 kDa; basic type) in a 1:1 ratio were used as substrates, all the protein kinases phosphorylated both of the constituent proteins to a significant rate and extent, and disassembly of the keratin filament structure occurred. Kinetic analysis suggested that all these protein kinases preferentially phosphorylate keratin 8, compared to keratin 18. The amino acid residues of keratins 8 and 18 phosphorylated by cAMP-dependent protein kinase or protein kinase C were almost exclusively serine, while those phosphorylated by Ca2+/calmodulin-dependent protein kinase II were serine and threonine. Peptide mapping analysis indicated that these protein kinases phosphorylate keratins 8 and 18 in a different manner. These observations gave the way for in vivo studies of the role of phosphorylation in the reorganization of keratin filaments.  相似文献   

11.
We studied the effect of phosphoinositides on the phosphorylation of endogenous proteins in the soluble fraction of the frog photoreceptor rod outer segments (ROS). Phosphatidylinositol (PI) stimulated the phosphorylation of two low molecular weight proteins, components I and II (12 and 11 kDa) which are known to be the preferential substrates of the cyclic GMP (cGMP)-dependent protein kinase in the ROS. Polyphosphoinositides (PPI) specifically inhibited the PI-dependent phosphorylation of these two components. On the other hand, PPI stimulated the phosphorylation of 38, 48 and 52 kDa proteins in the absence of PI. These data suggest that PI and PPI may function in the ROS by regulating the phosphorylation of some enzymes or regulator proteins in the transduction mechanism in the ROS.  相似文献   

12.
The effects of cGMP-dependent protein kinase (G-kinase), a major cellular receptor of cGMP, were investigated in activated human neutrophils. Immunocytochemistry demonstrated that G-kinase translocated from a diffuse localization in the cytoplasm to the cytoskeleton and nucleus after stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLP), and transiently co-localized with the intermediate filament protein, vimentin. During this time period, the most remarkable co-localization of G-kinase and vimentin was observed between 1-2.5 min stimulation with fMLP. At that time co-localization of G-kinase and vimentin was predominantly confined to filaments which extended from regions adjacent to the nucleus into the uropod. Distinctive localization for only G-kinase was observed at the microtubule organizing center and euchromatin of the nucleus. The filamentous staining pattern for G-kinase and vimentin was enhanced in the presence of 8-Br-cGMP. Coincident with co-localization of G-kinase and vimentin in adherent neutrophils was a transient increase in cGMP levels and an increase in the phosphorylation of vimentin in fMLP-stimulated cells. The increase in cGMP levels was dependent upon cell adherence, was enhanced by preincubating neutrophils with L-arginine (the precursor for nitric oxide synthesis), and attenuated with the nitric oxide synthase inhibitor, NG-monomethyl-L-arginine. Phosphorylation of vimentin in the fMLP-stimulated neutrophil was observed in the presence or absence of exogenous cGMP, although in the presence of low concentrations of 8-Br-cGMP a more rapid phosphorylation of vimentin was observed that correlated with the enhanced co-localization of G-kinase and vimentin. Phosphorylation of vimentin was not observed in non-activated cells treated with 8-Br-cGMP, suggesting that phosphorylation only occurs when G-kinase is co-localized with vimentin. The presence of the protein kinase C inhibitors, staurosporine or H-7, did not inhibit vimentin phosphorylation during fMLP stimulation, while 8-Br-cGMP enhanced phosphorylation in fMLP-treated cells. This suggests that neither protein kinase C nor cAMP-dependent protein kinase catalyze the phosphorylation of vimentin in neutrophils activated by fMLP. These results indicate that vimentin and G-kinase are co-localized in neutrophils and that vimentin is phosphorylated by G-kinase in response to the co-localization of the two proteins. A model for the targeting of G-kinase and vimentin is presented which hypothesizes that the transient redistribution of G-kinase may regulate neutrophil activation.  相似文献   

13.
Calphobindins (CPBs, placental annexins) are intracellular Ca(2+)- and phospholipid-dependent proteins like protein kinase C [EC 2.7.1.37]. We investigated the inhibitory effects of calphobindins on the protein kinase C activity in vitro. CPB I inhibited the protein kinase C activity for both histone phosphorylation and lipocortin phosphorylation, but CPB II and CPB III inhibited only the protein kinase C activity for histone phosphorylation. In the case of histone phosphorylation, all CPBs inhibited the protein kinase C activity in a concentration-dependent manner, and the IC50 (concentration required for 50% inhibition) value of CPB I was 70 nM. The inhibition of protein kinase C by CPB I was Ca(2+)-dependent, and did not disappear upon increasing the concentration of phosphatidyl-serine. Kinetic analysis by double-reciprocal plots indicated that CPB I interacted not only with phosphatidylserine but also with protein kinase C. Although CPB I partially interacts with phospholipid, it is conceivable that the inhibitory action of CPB I on protein kinase C results from direct interaction of CPB I with protein kinase C. Since CPBs are mainly present under the plasma membrane, it is presumed that CPB I is an endogenous inhibitor of protein kinase C, and according to intracellular circumstances, CPB II and CPB III may also be endogenous inhibitors.  相似文献   

14.
Preincubation of neutrophils with certain agonists may "prime" the cells to cause increased responses to a second stimulus ("primed stimulation"). We used two approaches to examine the role of protein kinase C (Ca2+/phospholipid-dependent enzyme) in priming and stimulation by 1-oleoyl-2-acetylglycerol (OAG), phorbol 12-myristate 13-acetate (PMA), and N-formyl-Met-Leu-Phe (fMLP): inhibition of protein kinase C by 1-(5-isoquinolinesulfonyl)-piperazine (C-I) and measurement of protein kinase C translocation induced by priming and stimulatory concentrations of OAG. C-I had little effect on stimulation or primed stimulation by fMLP, suggesting that fMLP invokes events independent of protein kinase C. C-I equally inhibited stimulation and primed stimulation by PMA. Direct stimulation by OAG was inhibited, but priming and primed stimulation by OAG was unaltered by C-I. OAG concentrations greater than or equal to 100 microM caused translocation of protein kinase C, in correlation with direct stimulation of the respiratory burst. Lower OAG concentrations (10-30 microM) primed to stimulation by fMLP and, conversely, stimulated neutrophils primed with fMLP, yet did not cause translocation of protein kinase C. The data are compatible with previous assumptions that PMA and OAG directly stimulate polymorphonuclear neutrophil leukocytes by translocation and activation of protein kinase C. However, priming and primed stimulation by OAG apparently invoke distinct transduction mechanisms other than protein kinase C translocation.  相似文献   

15.
Phosphorylations of two proteins (27 KDa, 32 KDa) in oat cells were dependent on phytochrome action. To determine which kinase system(s) for the phosphorylation of these two proteins are controlled by the phytochrome, involvement of the Ca2+/DG dependent protein kinase (protein kinase C) was first investigated. When a protein kinase C inhibitor (1-(5-isoquinoline sulfonyl)-2-methylpiperazine:H-7) or the inositol phospholipid metabolic blocker Li+ was added into the cell suspension, respectively, the phosphorylations of these two proteins were substantially reduced. On the other hand, an addition of 1-oleoyl-2-acetyl-sn-glycerol (OAG:activator of protein kinase C) or phorbol 12-myristate 13-acetate (TPA: tumor promoting phorbol ester) enhanced the phosphorylations of these proteins. These results suggest that phytochrome action is certainly connected with the protein phosphorylation via the activation of protein kinase C or a similar molecule with protein kinase C.  相似文献   

16.
The effects of synthetic atrial natriuretic factor (ANF) on the state of protein phosphorylation in plasma membranes of bovine adrenal cortex have been studied in vitro. ANF (1x10(-8)M - 1x10(-7)M) specifically inhibited the phosphorylation of two distinct proteins of 78 kDa and 240 kDa. Immunoblotting with specific antiserum to protein kinase C produced evidence that 78 kDa protein is most likely the protein kinase C whose phosphorylation is inhibited by both ANF and cGMP. However, cGMP did not affect the phosphorylation of 240 kDa protein, indicating a new cGMP-independent mechanism of ANF action in the adrenal, which is compatible with the lack of action of cGMP and its analogs in ANF-induced inhibition of aldosterone secretion from adrenal cortex. The inhibition of phosphorylation of putative protein kinase C by ANF or cGMP indicates a hitherto unknown signal transduction mechanism of ANF.  相似文献   

17.
Vasodilators such as sodium nitroprusside, nitroglycerin and various prostaglandins are capable of inhibiting platelet aggregation associated with an increase of either cGMP or cAMP. In our studies with intact platelets, prostaglandin E1 and sodium nitroprusside stimulated the phosphorylation of several proteins which could be distinguished from proteins known to be phosphorylated by a calmodulin-regulated protein kinase or by protein kinase C. Prostaglandin E1 (10 microM) or dibutyryl cAMP (2 mM) stimulated the phosphorylation of proteins with apparent relative molecular masses, Mr, of 240,000, 68,000, 50,000, and 22,000 in intact platelets. These proteins were also phosphorylated in response to low concentrations (1-2 microM) of cAMP in a particulate fraction of platelets. In intact platelets, sodium nitroprusside (100 microM) and the 8-bromo derivative of cGMP (2 mM) increased the phosphorylation of one protein of Mr 50,000 which was also phosphorylated in response to low concentrations (1-2 microM) of cGMP in platelet membranes. An additional protein (Mr 24,000) appeared to be phosphorylated to a lesser degree in intact platelets by prostaglandin E1 and sodium nitroprusside. Since the phosphorylation of the protein of Mr 50,000 was stimulated both in intact platelets by cyclic-nucleotide-elevating agents and cyclic nucleotide analogs, as well as in platelet membranes by cyclic nucleotides, this phosphoprotein was analyzed by limited proteolysis, tryptic fingerprinting and phosphoamino acid analysis. These experiments indicated that the 50-kDa proteins phosphorylated by sodium nitroprusside and prostaglandin E1 were identical, and that the peptide of the 50-kDa protein phosphorylated by both agents was also the same as the peptide derived from the 50-kDa protein phosphorylated in platelet membranes by cGMP- and cAMP-dependent protein kinases, respectively. Regulation of protein phosphorylation mediated by cAMP- and cGMP-dependent protein kinases may be the molecular mechanism by which those vasodilators, capable of increasing either cAMP or cGMP, inhibit platelet aggregation.  相似文献   

18.
In addition to its cGMP-selective catalytic site, cGMP-binding cGMP-specific phosphodiesterase (PDE5) contains two allosteric cGMP-binding sites and at least one phosphorylation site (Ser92) on each subunit [Thomas, M.K., Francis, S.H. & Corbin, J.D. (1990) J. Biol. Chem. 265, 14971-14978]. In the present study, prior incubation of recombinant bovine PDE5 with a phosphorylation reaction mixture [cGMP-dependent protein kinase (PKG) or catalytic subunit of cAMP-dependent protein kinase (PKA), MgATP, cGMP, 3-isobutyl-1-methylxanthine], shown earlier to produce Ser92 phosphorylation, caused a 50-70% increase in enzyme activity and also increased the affinity of cGMP binding to the allosteric cGMP-binding sites. Both effects were associated with increases in its phosphate content up to 0.6 mol per PDE5 subunit. Omission of any one of the preincubation components caused loss of stimulation of catalytic activity. Addition of the phosphorylation reaction mixture to a crude bovine lung extract, which contains PDE5, also produced a significant increase in cGMP PDE catalytic activity. The increase in recombinant PDE5 catalytic activity brought about by phosphorylation was time-dependent and was obtained with 0.2-0.5 microM PKG subunit, which is approximately the cellular level of this enzyme in vascular smooth muscle. Significantly greater stimulation was observed using cGMP substrate concentrations below the Km value for PDE5, although stimulation was also seen at high cGMP concentrations. Considerably higher concentration of the catalytic subunit of PKA than of PKG was required for activation. There was no detectable difference between phosphorylated and unphosphorylated PDE5 in median inhibitory concentration for the PDE5 inhibitors, sildenafil, or zaprinast 3-isobutyl-1-methylxanthine. Phosphorylation reduced the cGMP concentration required for half-maximum binding to the allosteric cGMP-binding sites from 0.13 to 0.03 microM. The mechanism by which phosphorylation of PDE5 by PKG could be involved in physiological negative-feedback regulation of cGMP levels is discussed.  相似文献   

19.
The endogenous substrate proteins of rat cardiac protein kinase C type I, II, and III isozymic forms were studied in rat cardiac sarcolemma. The 19-, 21-, 29-, 35-, and 95-kDa proteins were phosphorylated by both types II and III, but not type I. The extent of phosphorylation by individual protein kinase C isozymic forms was additive and equal to the extent of phosphorylation observed when a mixture of isozymic forms was employed. The extent of phosphorylation of the 21-kDa protein by type III was much higher than that by type II. These results suggest that the protein kinase C isozymes have preferences for specific endogenous substrate proteins. The phosphorylation of these endogenous substrate proteins by protein kinase C isozymes probably plays a role in cardiac cell functions.  相似文献   

20.
Expression of c-fos mRNA was investigated in fresh, normal peritoneal macrophages (M phi), which are terminally differentiated, nonproliferating cells. The levels of c-fos mRNA were dramatically increased by stimulation with phorbol myristate acetate (PMA), calcium ionophore, or 1-oleoyl-2-acetoyl glycerol (OAG). Induction of c-fos mRNA by all the above agents followed similar kinetics, with a peak of mRNA 30 min after stimulation. These results demonstrate that c-fos mRNA can be augmented in fresh, terminally differentiated cells. Since the stimuli increasing c-fos mRNA are direct or indirect activators of protein kinase C, our data suggest that in M phi c-fos mRNA is controlled by protein kinase C activation. PMA, calcium ionophore, and OAG were biologically active in M phi. PMA and calcium ionophore induced respiratory burst and tumoricidal activity, respectively, whereas OAG and PMA were chemotactic for M phi. Interferons beta and gamma, potent M phi activators eliciting tumoricidal activity, did not alter the levels of c-fos mRNA. These results indicate that c-fos mRNA augmentation is a stimulus-specific rather than a function-specific response connected to activation of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号