首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li S  Yang W  Maniccia AW  Barrow D  Tjong H  Zhou HX  Yang JJ 《The FEBS journal》2008,275(20):5048-5061
Ca2+, as a messenger of signal transduction, regulates numerous target molecules via Ca2+-induced conformational changes. Investigation into the determinants for Ca2+-induced conformational change is often impeded by cooperativity between multiple metal-binding sites or protein oligomerization in naturally occurring proteins. To dissect the relative contributions of key determinants for Ca2+-dependent conformational changes, we report the design of a single-site Ca2+-binding protein (CD2.trigger) created by altering charged residues at an electrostatically sensitive location on the surface of the host protein rat Cluster of Differentiation 2 (CD2).CD2.trigger binds to Tb3+ and Ca2+ with dissociation constants of 0.3 +/- 0.1 and 90 +/- 25 microM, respectively. This protein is largely unfolded in the absence of metal ions at physiological pH, but Tb3+ or Ca2+ binding results in folding of the native-like conformation. Neutralization of the charged coordination residues, either by mutation or protonation, similarly induces folding of the protein. The control of a major conformational change by a single Ca2+ ion, achieved on a protein designed without reliance on sequence similarity to known Ca2+-dependent proteins and coupled metal-binding sites, represents an important step in the design of trigger proteins.  相似文献   

2.
Electrostatic interactions are important for molecular recognition processes including Ca2+-binding and cell adhesion. To understand these processes, we have successfully introduced a novel Ca2+-binding site into the non-Ca2+-dependent cell adhesion protein CD2 using our criteria that are specifically tailored to the structural and functional properties of the protein environment and charged adhesion surface. This designed site with ligand residues exclusively from the beta-sheets selectively binds to Ca2+ and Ln3+ over other mono- and divalent cations. While Ca2+ and Ln3+ binding specifically alters the local environment of the designed Ca2+-binding site, the designed protein undergoes a significantly smaller conformation change compared with those observed in naturally occurring Ca2+-binding sites that are composed of at least part of the flexible loop and helical regions. In addition, the CD2-CD48-binding affinity increased approximately threefold after protein engineering, suggesting that the cell adhesion of CD2 can be modulated by altering the local electrostatic environment. The study provides site-specific information for regulating cell adhesion within CD2 and gives insight into the structural factors required for Ca2+-modulated biological processes.  相似文献   

3.
The cation-binding properties of the vitamin D-dependent Ca2+-binding protein from pig duodenum were investigated, mainly by flow dialysis. The protein bound two Ca2+ ions with high affinity, and Mg2+, Mn2+ and K+ were all bound competitively with Ca2+ at both sites. The sites were distinguished by their different affinities for Mn2+, the one with the higher affinity being designated A (Kd 0.61 +/- 0.02 microM) and the other B (Kd 50 +/- 6 microM). Competitive binding studies allied to fluorimetric titration with Mg2+ showed that site A bound Ca2+, Mg2+ and K+ with Kd values of 4.7 +/- 0.8 nM, 94 +/- 18 microM and 1.6 +/- 0.3 mM respectively, and site B bound the same three cations with Kd values of 6.3 +/- 1.8 nM, 127 +/- 38 microM and 2.1 +/- 0.6 mM. For the binding of these cations, therefore, there was no significant difference between the two sites. In the presence of 1 mM-Mg2+ and 150 mM-K+, both sites bound Ca2+ with an apparent Kd of 0.5 microM. The cation-binding properties were discussed relative to those of parvalbumin, troponin C and the vitamin D-dependent Ca2+-binding protein from chick duodenum.  相似文献   

4.
Vitamin K-dependent protein S is shown to contain four very high affinity Ca2(+)-binding sites. The number of sites and their affinities were determined from Ca2+ titration in the presence of the chromophoric chelator Quin 2. In 0.15 M NaCl, pH 7.5, the four macroscopic binding constants are K1 greater than or equal to 1 x 10(8) M-1, K2 = 3 +/- 2 x 10(7) M-1, K3 = 4 +/- 2 x 10(6) M-1, and K4 = 9 +/- 4 x 10(5) M-1. At low ionic strength, the corresponding values are K1 greater than or equal to 2 x 10(9) M-1, K2 = 9 +/- 4 x 10(8) M-1, K3 = 2 +/- 1 x 10(8) M-1, and K4 = 9 +/- 4 x 10(7) M-1. To localize the Ca2(+)-binding sites, protein S was subjected to proteolysis using lysyl endopeptidase. This yielded a 20-21-kDa fragment which comprised the third and fourth epidermal growth factor (EGF)-like domains and remained high affinity Ca2(+)-binding site(s). The susceptibility of the EGF-like domains to proteolysis increased when Ca2+ was removed from protein S indicating that the Ca2+ binding is important for the stability and/or conformation of the EGF domains. Three of the four EGF-like domains in protein S contain beta-hydroxyasparagine. In each of these domains there is a cluster of three or four negatively charged amino acid residues which are likely to contribute to the extraordinary high Ca2+ affinity. From sequence homology it is suggested that this novel type of high affinity Ca2(+)-binding site is present in several other proteins, e.g. in the EGF-like domains in the low sensity lipoproteins receptor, thrombomodulin, the Notch protein of Drosophila melanogaster, and transforming growth factor beta 1-binding protein.  相似文献   

5.
Vitamin D-dependent Ca2+-binding protein from pig duodenum was hydrolysed with trypsin in the presence of Ca2+ and two products were obtained: T1, which differed from the native protein by loss of Ac-Ser-Ala-Gln-Lys from the N-terminus and Ile-Ser-Gln-OH from the C-terminus, and T2, which differed from T1 by loss of a C-terminal lysine. The hydrolysis inactivated one of the two high-affinity Ca2+-binding sites on the native protein, and the remaining site was stable in T1 but labile in T2 when the proteins were Ca2+-free. Binding studies showed that T1 had Kd values of 2.8 +/- 0.1 nM, 57 +/- 13 microM and 0.8 +/- 0.3 microM for Ca2+, Mg2+ and Mn2+ respectively, and T2 had Kd 2.2 +/- 0.3 nM for Ca2+. The affinity for Mn2+, together with the other Kd values, identified the site on T1 as the site on the native protein previously found to have Kd 0.6 microM for Mn2+, rather than one with Kd 50 microM for Mn2+. In contrast with both the native protein and another form of the protein with a single Ca2+-binding site, the intrinsic fluorescence of T1 and T2 was little affected by the addition of Ca2+. It was concluded that the active binding site in T1 and T2, and also the site in the native protein with the higher affinity for Mn2+, was probably in the C-terminal half of the molecule.  相似文献   

6.
S100b protein, chemically modified by thioethanol groups (linked via disulfide bonds to two out of four Cys per dimer) was largely similar to reduced native S100b protein in its overall structure and differed only by small modifications extending, however, to the whole protein structure. Studies combining direct Ca2+ binding and associated conformational changes revealed that this chemical modification markedly increased the Ca2(+)-binding affinities (especially in the presence of physiological concentrations of K+ and Mg2+) and introduced a strong positive cooperativity. Different binding models are discussed and it emerges that in both proteins the Ca2(+)-binding sites are not equivalent and probably interact. Like the reduced protein, chemically modified S100b protein binds four Zn2+ ions in two classes of sites (of high and low affinities). Whereas the overall Zn2+ affinity was only slightly decreased, the binding sequence was probably reversed by the introduction of thioethanol groups. Moreover, in the presence of zinc, the Ca2+ affinities were higher and even identical, in both proteins.  相似文献   

7.
A Ca2+-binding protein which is capable of activating mammalian Ca2+-activatable cyclic nucleotide phosphodiesterase has been purified from Lumbricus terrestris and characterized. This protein and the Ca2+-dependent protein modulator from bovine tissues have many similar properties. Both proteins have molecular weights of approximately 18,000, isoelectric points of about pH 4, similar and characteristic ultraviolet spectra, and similar amino acid compositions. Both proteins bind calcium ions with high affinity. However, the protein from Lumbricus terrestris binds 2 mol of calcium ions with equal affinity, Kdiss = 6 X 10(-6) M, whereas the Ca2+-dependent protein modulator from bovine tissues binds 4 mol of calcium ions with differing affinities. Although the Ca2+-binding protein of Lumbricus terrestris activates the Ca2+-activatable cyclic nucleotide phosphodiesterase from mammalian tissues, we have failed to detect the existence of a Ca2+-activatable phosphodiesterase activity in Lumbricus terrestris. The activation of phosphodiesterase by the Ca2+-binding protein from Lumbricus terrestris is inhibited by the recently discovered bovine brain modulator binding protein (Wang, J. H., and Desai, R. (1977) J. Biol. Chem. 252, 4175-4184). Since the modulator binding protein has been shown to associate with the mammalian protein modulator to result in phosphodiesterase inhibition, it can be concluded that the Lumbricus terrestris Ca2+-binding protein also associates with the bovine brain modulator binding protein. Attempts to demonstrate the existence of a similar modulator binding protein in Lumbricus terrestris have been unsuccessful.  相似文献   

8.
Rat intestinal Golgi-enriched membrane fractions take up Ca2+ by a vitamin D-dependent process that has been shown to recover within 15 min of repletion of vitamin D-deficient animals with intravenous 1,25-dihydroxycholecalciferol. The present paper reports studies characterizing the Ca2+-binding sites of these membrane fractions. Equilibrium binding of Ca2+ at concentrations between 5 and 400 microM showed significant decreases at all concentrations in membranes derived from vitamin D-deficient animals when compared with normal control-diet-fed animals. The predominant class of binding sites had a relatively high affinity for Ca2+ (KD approx. 3 microM). Vitamin D-deficiency did not change the affinity of this class of site, but decreased the number from 347 +/- 26 to 168 +/- 50 nmol of Ca2+ bound/mg of protein (means +/- S.D.). Mg2+ inhibited binding only at low Ca2+ concentrations, and the characteristics of this binding suggested positive co-operativity between two binding sites. Equimolar concentrations of Zn2+, La3+, Pb2+ and Mn2+ inhibited Ca2+ binding by over 50%. Increased ionic strength decreased Ca2+ binding by no more than half. Binding was maximal at pH 7.5 and half-maximal at pH 6.3. The large number of binding sites with relatively high affinity for Ca2+ suggests that it is unlikely that this binding is to any specific protein or to non-specific sites present on many proteins, and that the most likely sites are lipid molecules.  相似文献   

9.
In this report, we have focused our attention on identifying intracellular mammalian proteins that bind S100A12 in a Ca2+-dependent manner. Using S100A12 affinity chromatography, we have identified cytosolic NADP+-dependent isocitrate dehydrogenase (IDH), fructose-1,6-bisphosphate aldolase A (aldolase), glyceraldehyde-3-phosphate dehydrogenese (GAPDH), annexin V, S100A9, and S100A12 itself as S100A12-binding proteins. Immunoprecipitation experiments indicated the formation of stable complexes between S100A12 and IDH, aldolase, GAPDH, annexin V and S100A9 in vivo. Surface plasmon resonance analysis showed that the binding to S100A12, of S100A12, S100A9 and annexin V, was strictly Ca2+-dependent, whereas that of GAPDH and IDH was only weakly Ca2+-dependent. To localize the site of S100A12 interaction, we examined the binding of a series of C-terminal truncation mutants to the S100A12-immobilized sensor chip. The results indicated that the S100A12-binding site on S100A12 itself is located at the C-terminus (residues 87-92). However, cross-linking experiments with the truncation mutants indicated that residues 87-92 were not essential for S100A12 dimerization. Thus, the interaction between S100A12 and S100A9 or immobilized S100A12 should not be viewed as a typical S100 homo- or heterodimerization model. Ca2+-dependent affinity chromatography revealed that C-terminal residues 75-92 are not necessary for the interaction of S100A12 with IDH, aldolase, GAPDH and annexin V. To analyze the functional properties of S100A12, we studied its action in protein folding reactions in vitro. The thermal aggregation of IDH or GAPDH was facilitated by S100A12 in the absence of Ca2+, whereas in the presence of Ca2+ the protein suppressed the aggregation of aldolase to less than 50%. These results suggest that S100A12 may have a chaperone/antichaperone-like function which is Ca2+-dependent.  相似文献   

10.
Protein C undergoes Ca2+-induced conformational changes required for activation by the thrombin-thrombomodulin complex. A Ca2+-dependent monoclonal antibody (HPC4) that blocks protein C activation was used to study conformational changes near the activation site in protein C. The half-maximal Ca2+ dependence was similar for protein C and gamma-carboxy-glutamic acid-domainless protein C for binding to HPC4 (205 +/- 23 and 110 +/- 29 microM Ca2+, respectively), activation rates (214 +/- 22 and 210 +/- 37 microM), and intrinsic fluorescence of gamma-carboxyglutamic acid-domainless protein C (176 +/- 34 microM). Protein C heavy chain binding to HPC4 was half-maximal at 36 microM Ca2+, although neither the heavy chain nor HPC4 separately bound Ca2+ with high affinity. The epitope was lost when the activation peptide was released. A synthetic peptide, P (6-17), which spans the activation site, exhibited Ca2+-dependent binding to HPC4 (half-maximal binding = 6 microM Ca2+). Thus, each decrease in antigen structure resulted in a reduced Ca2+ requirement for binding to HPC4. Tb3+ and Ca2+ binding studies demonstrated a Ca2+-binding site in HPC4 required for high affinity antigen binding. These studies provide the first direct evidence for a Ca2+-induced conformational change in the activation region of a vitamin K-dependent zymogen. Furthermore, Ca2+ binding to HPC4 is required for antigen binding. The multiple roles of Ca2+ described may be useful in interpretation of other metal-dependent antibody/antigen interactions.  相似文献   

11.
Mukherjee S  Mohan PM  Chary KV 《Biochemistry》2007,46(12):3835-3845
Calcium binding proteins carry out various signal transduction processes upon binding to Ca2+. In general, these proteins perform their functions in a high background of Mg2+. Here, we report the role of Mg2+ on a calcium sensor protein from Entamoeba histolytica (EhCaBP), containing four Ca2+-binding sites. Mg2+-bound EhCaBP exists as a monomer with a conformation different from that of the holo- and apo-EhCaBP. NMR and biophysical data on EhCaBP demonstrate that Mg2+ stabilizes the closed conformation of the apo form. In the presence of Mg2+, the partially collapsed apo-EhCaBP gains stability and structural integrity. Mg2+ binds to only 3 out of 4 calcium binding sites in EhCaBP. The Ca2+ binding affinity and cooperativity of the conformational switching from the "closed" to the "open" state is significantly modulated by the presence of Mg2+. This fine-tuning of the Ca2+ concentration to switch its conformation is essential for CaBPs to carry out the signal transduction process efficiently.  相似文献   

12.
Ca2+ binding to the wild type recombinant oncomodulin was studied by equilibrium flow dialysis in the absence and presence of 1, 2, and 10 mM Mg2+. Direct Mg2(+)-binding experiments were carried out by the Hummel-Dryer gel filtration technique. These studies revealed that in the absence of Mg2+ oncomodulin binds two Ca2+ with KCa = 2.2 x 10(7) and 1.7 x 10(6) M-1, respectively. In the absence of Ca2+ the protein binds only one Mg2+ with KMg = 4.0 x 10(3) M-1.Mg2+ antagonizes Ca2+ binding at the high affinity site according to the rule of direct competition. Ca2+ binding to the low affinity site is only slightly affected by Mg2+, so that in the presence of 2-3 mM Mg2+ the two sites have apparently an equal affinity for Ca2+. Microcalorimetry showed that, in spite of the different affinities of the two Ca2(+)-binding sites, delta H0 for the binding of each Ca2+ is identical and exothermic for -18.9 kJ/site. It follows that the entropy gain upon binding of Ca2+ is +77.1 J K-1 site-1 for the high affinity Ca2(+)-Mg2+ site and +56.0 J K-1 site-1 for the low affinity Ca2(+)-specific site. Mg2+ binding is endothermic for +13 kJ/site with an entropy change of +111 J K-1 site-1. The thermodynamic characteristics of the Ca2(+)-Mg2+ site resemble most those of site II (the so-called EF domain) of toad alpha-parvalbumin. The characteristics of Ca2+ binding to the specific site (likely the CD domain) are different from those of the Ca2+ specific sites in troponin C and in calmodulin and suggest that in oncomodulin hydrophobic forces do not play a predominant role in the binding process at the specific site.  相似文献   

13.
Calsequestrin is a Ca2+-binding protein located intraluminally in the junctional sarcoplasmic reticulum (SR) of striated muscle. In this study, Ca2+ binding to cardiac calsequestrin was assessed directly by equilibrium dialysis and correlated with effects on protein conformation and calsequestrin's ability to interact with other SR proteins. Cardiac calsequestrin bound 800-900 nmol of Ca2+/mg of protein (35-40 mol of Ca2+/mol of calsequestrin). Associated with Ca2+ binding to cardiac calsequestrin was a loss in protein hydrophobicity, as revealed with use of absorbance difference spectroscopy, fluorescence emission spectroscopy, and photoaffinity labeling with the hydrophobic probe 3-(trifluoromethyl)-3-(m-[125]iodophenyl)diazirine. Ca2+ binding to cardiac calsequestrin also caused a large change in its hydrodynamic character, almost doubling the sedimentation coefficient. We observed that cardiac calsequestrin was very resistant to several proteases after binding Ca2+, consistent with a global effect of Ca2+ on protein conformation. Moreover, Ca2+ binding to cardiac calsequestrin completely prevented its interaction with several calsequestrin-binding proteins, which we identified in cardiac junctional SR vesicles for the first time. The principal calsequestrin-binding protein identified in junctional SR vesicles exhibited an apparent Mr of 26,000 in sodium dodecyl sulfate-polyacrylamide gels. This 26-kDa calsequestrin-binding protein was greatly reduced in free SR vesicles and absent from sarcolemmal vesicles and was different from phospholamban, an SR regulatory protein exhibiting a similar molecular weight. Our results suggest that the specific interaction of calsequestrin with this 26-kDa protein may be regulated by Ca2+ concentration in intact cardiac muscle, when the Ca2+ concentration inside the junctional SR falls to submillimolar levels during coupling of excitation to contraction.  相似文献   

14.
The isotypes of sarcoplasmic Ca2+ binding protein (SCP) were purified from shrimp tail muscle. SCP exists in a dimeric form. One sample of shrimp contained only alpha A chain, whereas another contained alpha B and beta chains, and a heterodimer of alpha B beta which was not analyzed precisely. The amino acid sequences of the two alpha chains were determined. The two alpha chains are composed of 190 and 192 amino acid residues, respectively. The sequences of the two alpha chains differed in only four amino acids out of 192 residues. The sequences indicate that the alpha chain has three Ca2+-binding sites which are common to EF-hand type Ca2+-binding protein. In the absence of added Ca2+ and Mg2+, the amounts of bound Ca2+ in alpha A, alpha B, and beta chains were 3.0, 3.3, and 2.4 mol/22,000 g protein, respectively. Thus, it is suggested that all three isotypes of shrimp SCP have three Ca2+-binding sites which have high affinity to Ca2+. The sequence homology of shrimp SCP with other EF-hand type Ca2+-binding proteins is very low. The protein having the greatest homology with this SCP was cod parvalbumin; the sequence homology is 18%.  相似文献   

15.
Calbindin-D28K is a 1 alpha,25-dihydroxyvitamin D3-dependent protein that belongs to the superfamily of high affinity calcium-binding proteins which includes parvalbumin, calmodulin, and troponin C. All of these proteins bind Ca2+ ligands by an alpha-helix-loop-alpha-helix domain that is termed an EF-hand. Calbindin-D28K has been reported previously to have four high affinity Ca2(+)-binding sites (KD less than 10(-7)) as quantitated by equilibrium dialysis. With the determination of the amino acid sequence, it was clear that there are in fact six apparent EF-hand domains, although the Ca2(+)-binding functionality of the two additional domains was unclear. It was of interest to quantitate the Ca2(+)-binding ability of chick intestinal calbindin-D28K utilizing several different Ca2+ titration methods that cover a range of macroscopic binding constants for weak or strong Ca2+ sites. Titrations with the Ca2+ chelator dibromo-1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (5,5'-Br2BAPTA), a Ca2+ selective electrode, and as followed by 1H NMR, which measure KD values of 10(-6)-10(-8) M, 10(-4)-10(-7) and 10(-3)-10(-5) M, respectively, gave no evidence for the presence of weak Ca2(+)-binding sites. However, Ca2+ titration of the fluorescent Ca2+ chelator Quin 2 in the presence of calbindin-D28K yielded a least squares fit optimal for 5.7 +/- 0.8 Ca2(+)-binding sites with macroscopic dissociation constants around 10(-8) M. The binding of Ca2+ by calbindin was found to be cooperative with at least two of the sites exhibiting positive cooperativity.  相似文献   

16.
Interaction between Gd3+ and Tb3+ ions and Ca2+,Mg2+-ATPase of sarcoplasmic reticulum was studied. Three classes of lanthanide-ion binding sites with different affinities were distinguished. Binding of Gd3+ to the site with the highest affinity seemed to occur at less than 10(-6)M free Gd3+ and resulted in severe inhibition of ATPase activity. The reaction rates of both E-P formation and decomposition in the forward direction were inhibited in parallel with this binding, whereas ADP-dependent decay of E-P in the backward direction was not. At these Gd3+ concentrations, Ca2+-binding to the transport site was not inhibited. Binding of Gd3+ and Tb3+ to the Ca2+-transport site did occur, but more than 10(-5)M free Gd3+ or Tb3+ was required for effective competition with Ca2+ for that site. Gd3+ bound to the transport site in place of Ca2+ did not activate the E-P intermediate formation. Addition of 10(-1)M Tb3+ to a suspension of sarcoplasmic reticulum membranes resulted in marked enhancement of Tb3+ fluorescence, which is due to an energy transfer from aromatic amino acid residues of ATPase to Tb3+ ions bound to the low affinity site of the enzyme. Gd3+ and Mn2+ competed with Tb3+ for that site, but Ca2+, Zn2+, and Cd2+ did not.  相似文献   

17.
Using physical techniques, circular dichroism and intrinsic and extrinsic fluorescence, the binding of divalent cations to soluble protein kinase C and their effects on protein conformation were analyzed. The enzyme copurifies with a significant concentration of endogenous Ca2+ as measured by atomic absorption spectrophotometry, however, this Ca2+ was insufficient to support enzyme activity. Intrinsic tryptophan fluorescence quenching occurred upon addition to the soluble enzyme of the divalent cations, Zn2+, Mg2+, Ca2+ or Mn2+, which was irreversible and unaffected by monovalent cations (0.5 M NaCl). Far ultraviolet (200-250 nm) circular dichroism spectra provided estimations of secondary structure and demonstrated that the purified enzyme is rich in alpha-helices (42%) suggesting a rather rigid structure. At Ca2+ or Mg2+ concentrations similar to those used for fluorescence quenching, the enzyme undergoes a conformational transition (42-24% alpha-helix, 31-54% random structures) with no significant change in beta-sheet structures (22-26%). Maximal effects on 1 microM enzyme were obtained at 200 microM Ca2+ or 100 microM Mg2+, the divalent cation binding having a higher affinity for Mg2+ than for Ca2+. The Ca2(+)-induced transition was time-dependent, while Mg2+ effects were immediate. In addition, there was no observed energy transfer for protein kinase C with the fluorescent Ca2(+)-binding site probe, terbium(III). This study suggests that divalent cation-induced changes in soluble protein kinase C structure may be an important step in in vitro analyses that has not yet been detected by standard biochemical enzymatic assays.  相似文献   

18.
Aqualysin I has at least two Ca2+-binding sites that have different affinities for Ca2+. The binding of various metal ions to aqualysin I was studied using 23Na- and 139La-NMR spectrometry. Evidence is presented that Ca2+, La3+, and Na+ bind to the low-affinity Ca2+-binding site of aqualysin I, but Mg2+ does not. Our results confirm that binding of metals at the low-affinity Ca2+-binding site is essential for thermostabilization, since the addition of Mg2+ did not result in thermostabilization. La3+ was found to bind to both the low-affinity Ca2+-binding site and an additional metal ion-binding site that can also be involved in the thermostabilization of aqualysin I.  相似文献   

19.
Structural independence of the two EF-hand domains of caltractin   总被引:1,自引:0,他引:1  
Caltractin (centrin) is a member of the calmodulin subfamily of EF-hand Ca2+-binding proteins that is an essential component of microtubule-organizing centers in many organisms ranging from yeast and algae to humans. The protein contains two homologous EF-hand Ca2+-binding domains linked by a flexible tether; each domain is capable of binding two Ca2+ ions. In an effort to search for domain-specific functional properties of caltractin, the two isolated domains were subcloned and expressed in Escherichia coli. Ca2+ binding affinities and the Ca2+ dependence of biophysical properties of the isolated domains were monitored by UV, CD, and NMR spectroscopy. Comparisons to the corresponding results for the intact protein showed that the two domains function independently of each other in these assays. Titration of a peptide fragment from the yeast Kar1p protein to the isolated domains and intact caltractin shows that the two domains interact in a Ca2+-dependent manner, with the C-terminal domain binding much more strongly than the N-terminal domain. Measurements of the macroscopic Ca2+ binding constants show that only the N-terminal domain has sufficient apparent Ca2+ affinity in vitro (1-10 microm) to be classified as a traditional calcium sensor in signal transduction pathways. However, investigation of the microscopic Ca2+ binding events in the C-terminal domain by NMR spectroscopy revealed that the observed macroscopic binding constant likely results from binding to two sites with very different affinities, one in the micromolar range and the other in the millimolar range. Thus, the C-terminal domain appears to also be capable of sensing Ca2+ signals but is activated by the binding of a single ion.  相似文献   

20.
Tetrahymena calcium-binding protein is indeed a calmodulin   总被引:1,自引:0,他引:1  
We previously isolated a Ca2+-binding protein from a ciliate, Tetrahymena, and designated it as TCBP (Tetrahymena Ca2+-binding protein). The present paper reports that TCBP, which has two high affinity Ca2+-binding sites (Kd=4.6 X 10(-6) M), could activate porcine brain cyclic nucleotide phosphodiesterase at a concentration of over 10(-6) M free Ca2+, with the same mode of activation as that of authentic (porcine brain) calmodulin. In addition, the amino acid composition of TCBP was essentially the same as that of brain calmodulin. Therefore, we conclude that TCBP as an activator of Tetrahymena guanylate cyclase is indeed a calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号