首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the biphasic theory for hydrated soft tissues (Mow et al., 1980) and a transversely isotropic elastic model for the solid matrix, an analytical solution is presented for the unconfined compression of cylindrical disks of growth plate tissues compressed between two rigid platens with a frictionless interface. The axisymmetric case where the plane of transverse isotropy is perpendicular to the cylindrical axis is studied, and the stress-relaxation response to imposed step and ramp displacements is solved. This solution is then used to analyze experimental data from unconfined compression stress-relaxation tests performed on specimens from bovine distal ulnar growth plate and chondroepiphysis to determine the biphasic material parameters. The transversely isotropic biphasic model provides an excellent agreement between theory and experimental results, better than was previously achieved with an isotropic model, and can explain the observed experimental behavior in unconfined compression of these tissues.  相似文献   

2.
The technique of resonant ultrasound spectroscopy (RUS) was used to measure the second-order elastic constants of hydrated human dentin. Specimens were placed between two transducers, and the resonant frequencies of vibration were measured between 0.5 and 1.4 MHz. The elastic constants determined from the measured resonant frequencies in hydrated dentin exhibited slight hexagonal anisotropy, with the stiffest direction being perpendicular to the axis of the tubules (E11 = 25.1GPA) This hexagonal anisotropy was small (E33/E11 = 0.92), and almost disappeared when the specimens were dried. In addition, there was a pronounced anisotropy in the Poisson's ratio of wet dentin: v21 = 0.45; v31 = 0.29. With drying in air, this anisotropy vanished: v21 = v31 = 0.29. The isotropic Young's modulus of dried dentin was 28.1 GPa. RUS shows promise for determining the elastic constants in mineralized tissues.  相似文献   

3.
Errors induced by off-axis measurement of the elastic properties of bone   总被引:1,自引:0,他引:1  
Misalignment between the axes of measurement and the material symmetry axes of bone causes error in anisotropic elastic property measurements. Measurements of Poisson's ratio were strongly affected by misalignment errors. The mean errors in the measured Young's moduli were 9.5 and 1.3 percent for cancellous and cortical bone, respectively, at a misalignment angle of 10 degrees. Mean errors of 1.1 and 5.0 percent in the measured shear moduli for cancellous and cortical bone, respectively, were found at a misalignment angle of 10 degrees. Although, cancellous bone tissue was assumed to have orthotropic elastic symmetry, the possibility of the greater symmetry of transverse isotropy was investigated. When the nine orthotropic elastic constants were forced to approximate the five transverse isotropic elastic constants, errors of over 60 percent were introduced. Therefore, it was concluded that cancellous bone is truly orthotropic and not transversely isotropic. A similar but less strong result for cortical bone tissue was obtained.  相似文献   

4.
Numerical models commonly account for elastic inhomogeneity in cortical bone using power-law scaling relationships with various measures of tissue density, but limited experimental data exists for anatomic variation in elastic anisotropy. A recent study revealed anatomic variation in the magnitude and anisotropy of elastic constants along the entire femoral diaphysis of a single human femur (Espinoza Orías et al., 2009). The objective of this study was to confirm these trends across multiple donors while also considering possible confounding effects of the anatomic quadrant, apparent tissue density, donor age, and gender. Cortical bone specimens were sampled from the whole femora of 9 human donors at 20%, 50%, and 80% of the total femur length. Elastic constants from the main diagonal of the reduced fourth-order tensor were measured on hydrated specimens using ultrasonic wave propagation. The tissue exhibited orthotropy overall and at each location along the length of the diaphysis (p < 0.0001). Elastic anisotropy increased from the mid-diaphysis toward the epiphyses (p < 0.05). The increased elastic anisotropy was primarily caused by a decreased radial elastic constant (C(11)) from the mid-diaphysis toward the epiphyses (p < 0.05), since differences in the circumferential (C(22)) and longitudinal (C(33)) elastic constants were not statistically significant (p > 0.29). Anatomic variation in intracortical porosity may account for these trends, but requires further investigation. The apparent tissue density was positively correlated with the magnitude of each elastic constant (p < 0.0001, R(2) > 0.46), as expected, but was only weakly correlated with C(33)/C(11) (p < 0.05, R(2) = 0.04) and not significantly correlated with C(33)/C(22) and C(11)/C(22).  相似文献   

5.
The elastic anisotropy of bone   总被引:3,自引:0,他引:3  
J L Katz  A Meunier 《Journal of biomechanics》1987,20(11-12):1063-1070
In modeling the anisotropic properties of hydroxyapatite (HAp), Katz found that two kinds of phenomenological relationships held among the elastic stiffness coefficients. Firstly, there are three linear combinations--(c11 + c22 + c33), (c44 + c55 + c66), (c12 + c13 + c23)--which arise naturally when computing the isotropic averages of anisotropic crystal systems over all possible spatial orientations. Secondly, the degree of elastic anisotropy in such crystal systems is characterized by two specific factors: (a) the ratio of the linear compressibility along the unique axis to that perpendicular to it, (c11 + c12 - 2c23)(c33 - c13); and (b) the ratio of the two shear moduli, c44/c66. There have been a number of experiments in recent years which have used either mechanical methods or ultrasonic techniques to measure the anisotropic elastic properties of bovine and human cortical bone. Analyses of data from these experiments show that the above relationships also play a significant role in characterizing the elastic anisotropy in bone.  相似文献   

6.
The objective of this study was to examine the dependence of the elastic properties of cortical bone as a transversely isotropic material on its porosity. The longitudinal Young's modulus, transverse Young's modulus, longitudinal shear modulus, transverse shear modulus, and longitudinal Poisson's ratio of cortical bone were determined from eighteen groups of longitudinal and transverse specimens using tensile and torsional tests on a servo-hydraulic material testing system. These cylindrical waisted specimens of cortical bone were harvested from the middle diaphysis of three pairs of human femora. The porosity of these specimens was assessed by means of histology. Our study demonstrated that the longitudinal Young's and shear moduli of human femoral cortical bone were significantly (p<0.01) negatively correlated with the porosity of cortical bone. Conversely, the elastic properties in the transverse direction did not have statistically significant correlations with the porosity of cortical bone. As a result, the transverse elastic properties of cortical bone were less sensitive to changes in porosity than those in the longitudinal direction. Additionally, the anisotropic ratios of cortical bone elasticity were found to be significantly (p<0.01) negatively correlated with its porosity, indicating that cortical bone tended to become more isotropic when its porosity increased. These results may help a number of researchers develop more accurate micromechanics models of cortical bone.  相似文献   

7.
The macroscopic mechanical properties of trabecular bone can be predicted by its architecture using theoretical relationships between the elastic and architectural properties. Microdamage caused by overloading or fatigue decreases the apparent elastic moduli of trabecular bone requiring these relationships to be modified to predict the damaged elastic properties. In the case of isotropic damage, the apparent level elastic properties could be determined by multiplying all of the elastic constants by a single scalar factor. If the damage is anisotropic, the elastic constants may change by differing factors and the material coordinate system could become misaligned with the fabric coordinate system. High-resolution finite element models were used to simulate damage overloading on seven trabecular bone specimens subjected to pure shear strain in two planes. Comparison of the apparent elastic moduli of the specimens before and after damage showed that the reduction of the elastic moduli was anisotropic. This suggests that the microdamage within the specimens was inhomogeneous. However, after damage the specimens exhibited nearly orthotropic material symmetry as they did before damage. Changes in the orientation of the orthotropic material coordinate system were also small and occurred primarily in the transverse plane. Thus, while damage in trabecular bone is anisotropic, the material coordinate system remains aligned with the fabric tensor.  相似文献   

8.
An experimental compliance calibration method for measuring crack length in fracture toughness tests of cortical bone was developed. Calibration tests were conducted on twenty compact type fracture specimens machined from the mid-diaphysis of five pairs of equine third metacarpal bones. Specimens were oriented for crack propagation in a direction transverse to the longitudinal axis of the bone. Specimen compliance was determined from the load vs. crack opening displacement record over a range of crack lengths from 0.48 to 0.75 times the specimen width. The results demonstrate that the compliance calibration method developed for isotropic materials can be used to determine crack length in bone, which is transversely isotropic. However, specimens from lateral and dorsal regions exhibited significantly different compliance calibrations even after differences in elastic modulus were taken into account in the normalized compliance.  相似文献   

9.
Cortical bone tissue is an anisotropic material characterized by typically five independent elastic coefficients (for transverse isotropy) governing shear and longitudinal deformations in the different anatomical directions. It is well established that the Young’s modulus in the direction of the bone axis of long bones has a strong relationship with mass density. It is not clear, however, whether relationships of similar strength exist for the other elastic coefficients, for they have seldom been investigated, and the results available in the literature are contradictory. The objectives of the present work were to document the anisotropic elastic properties of cortical bone at the tibia mid-diaphysis and to elucidate their relationships with mass density. Resonant ultrasound spectroscopy (RUS) was used to measure the transverse isotropic stiffness tensor of 55 specimens from 19 donors. Except for Poisson’s ratios and the non-diagonal stiffness coefficient, strong linear correlations between the different elastic coefficients \((0.7 < {r^{2}} < 0.99)\) and between these coefficients and density \((0.79 < {r^{2}} < 0.89)\) were found. Comparison with previously published data from femur specimens suggested that the strong correlations evidenced in this study may not only be valid for the mid-tibia. RUS also measures the viscous part of the stiffness tensor. An anisotropy ratio close to two was found for damping coefficients. Damping increased as the mass density decreased. The data suggest that a relatively accurate estimation of all the mid-tibia elastic coefficients can be derived from mass density. This is of particular interest (1) to design organ-scale bone models in which elastic coefficients are mapped according to Hounsfield values from computed tomography scans as a surrogate for mass density and (2) to model ultrasound propagation at the mid-tibia, which is an important site for the in vivo assessment of bone status with axial transmission techniques.  相似文献   

10.
This study investigated the role of the material properties assumed for articular cartilage, meniscus and meniscal attachments on the fit of a finite element model (FEM) to experimental data for meniscal motion and deformation due to an anterior tibial loading of 45 N in the anterior cruciate ligament-deficient knee. Taguchi style L18 orthogonal arrays were used to identify the most significant factors for further examination. A central composite design was then employed to develop a mathematical model for predicting the fit of the FEM to the experimental data as a function of the material properties and to identify the material property selections that optimize the fit. The cartilage was modeled as isotropic elastic material, the meniscus was modeled as transversely isotropic elastic material, and meniscal horn and the peripheral attachments were modeled as noncompressive and nonlinear in tension spring elements. The ability of the FEM to reproduce the experimentally measured meniscal motion and deformation was most strongly dependent on the initial strain of the meniscal horn attachments (epsilon(1H)), the linear modulus of the meniscal peripheral attachments (E(P)) and the ratio of meniscal moduli in the circumferential and transverse directions (E(theta)E(R)). Our study also successfully identified values for these critical material properties (epsilon(1H) = -5%, E(P) = 5.6 MPa, E(theta)E(R) = 20) to minimize the error in the FEM analysis of experimental results. This study illustrates the most important material properties for future experimental studies, and suggests that modeling work of meniscus, while retaining transverse isotropy, should also focus on the potential influence of nonlinear properties and inhomogeneity.  相似文献   

11.
Nonlinear elastic analysis of blood vessels   总被引:1,自引:0,他引:1  
Based on the theory of Green and Adkins [9], a strain energy function is proposed to describe the nonlinear mechanical behavior of arteries. The arterial tissue is assumed to be a nonlinear elastic, incompressible material with local triclinicity and transverse isotropy. Although the arterial tissue shows viscous phenomena, experimental results have indicated that viscosity is only a second-order effect as compared to the nonlinear elasticity of the tissue. The advantage of the formulation presented herein is that it is relatively simple and results in an accurate stress-strain relation that can be used readily for the study of wave propagations in the blood vessels. For nonlinear finite strain elasticity of the order two, ten elastic constants are needed to describe the material nonlinearity of the arterial tissue. Based on the orthogonal, transverse isotropies and the incompressibility conditions, ten constraint equations may be established and the elastic constants can be uniquely determined by correlating with the experimental results. An example of calculating these elastic constants is made by using the experimental data of Patel, et al. [14-17] for the intercoastal arteries in living dogs. The predicted mechanical behavior of canine arteries is quite satisfactory as compared to the experimental data except when the longitudinal and the circumferential stretches exceed 1.60. However, such a strain magnitude may not be expected in in-vivo arteries because of the constraints of peripheral connecting tissues. Otherwise, the strain energy function including higher order strain terms should be used.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Fung elasticity refers to the hyperelasticity constitutive relation proposed by Fung and co-workers for describing the pseudo-elastic behavior of biological soft tissues undergoing finite deformation. A frame-invariant formulation of Fung elasticity is provided for material symmetries ranging from orthotropy to isotropy, which uses Lamé-like material constants. In the orthotropic case, three orthonormal vectors are used to define mutually orthogonal planes of symmetry and associated texture tensors. The strain energy density is then formulated as an isotropic function of the Lagrangian strain and texture tensors. The cases of isotropy and transverse isotropy are derived from the orthotropic case. Formulations are provided for both material and spatial frames. These formulations are suitable for implementation into finite element codes. It is also shown that the strain energy function can be naturally uncoupled into a dilatational and a distortional part, to facilitate the computational implementation of incompressibility.  相似文献   

13.
The key parameters determining the elastic properties of an unidirectional mineralized bone fibril-array decomposed in two further hierarchical levels are investigated using mean field methods. Modeling of the elastic properties of mineralized micro- and nanostructures requires accurate information about the underlying topology and the constituents’ material properties. These input data are still afflicted by great uncertainties and their influence on computed elastic constants of a bone fibril-array remains unclear. In this work, mean field methods are applied to model mineralized fibrils, the extra-fibrillar matrix and the resulting fibril-array. The isotropic or transverse isotropic elastic constants of these constituents are computed as a function of degree of mineralization, mineral distribution between fibrils and extra-fibrillar matrix, collagen stiffness and fibril volume fraction. The linear sensitivity of the elastic constants was assessed at a default set of the above parameters. The strain ratios between the constituents as well as the axial and transverse indentation moduli of the fibril-array were calculated for comparison with experiments. Results indicate that the degree of mineralization and the collagen stiffness dominate fibril-array elasticity. Interestingly, the stiffness of the extra-fibrillar matrix has a strong influence on transverse and shear moduli of the fibril-array. The axial strain of the intra-fibrillar mineral platelets is 30–90% of the applied fibril strain, depending on mineralization and collagen stiffness. The fibril-to-fibril-array strain ratio is essentially ~1. This study provides an improved insight in the parameters, which govern the fibril-array stiffness of mineralized tissues such as bone.  相似文献   

14.
The critical angle reflection technique was used to determine longitudinal and shear sonic velocity components in the exposed surface of bovine incisors along the tooth axis and perpendicular to it. By grinding a flat on the tooth surface successive layers were exposed and the velocity components measured. Plots of the velocity variation with depth were prepared which show some variation in the enamel, much less in the dentine and a sharp drop at the dentino-enamel junction. Strong evidence of anisotropy is demonstrated, especially in enamel.

The longitudinal velocity component is larger than previous values for measurements through these hard tissues. Hydroxyapatite and bone models assuming hexagonal symmetry indicate that the surface velocity should be the smaller component. The Katz hexagonally symmetrical bone model shows a significant dip in the velocity along the 45° propagation direction. If it is assumed that prior measurements correspond to the 45° rather than the c-axis direction, a set of elastic constants can be calculated which are an estimate for enamel and dentine. These resemble the Katz bone model.

Enamel C11 115, C12 42·4, C13 30, 33 125, C44 22·8

Dentine C11 37, C12 16·6, C13 8·7, C33 39, C44 5·7

Katz bone model C11 31, C12 14·7, C13 11·3, C33 33, C44 6·2

(all × 109N/m2)

Poisson's ratio for enamel is estimated to be 0·28 and for dentine 0·32.  相似文献   


15.
Knowledge of elastic properties and of their variation in the cortical bone of the craniofacial skeleton is indispensable for creating accurate finite-element models to explore the biomechanics and adaptation of the skull in primates. In this study, we measured elastic properties of the external cortex of the rhesus monkey craniofacial skeleton, using an ultrasonic technique. Twenty-eight cylindrical cortical specimens were removed from each of six craniofacial skeletons of adult Macaca mulatta. Thickness, density, and a set of longitudinal and transverse ultrasonic velocities were measured on each specimen to allow calculation of the elastic properties in three dimensions, according to equations derived from Newton's second law and Hooke's law. The axes of maximum stiffness were determined by fitting longitudinal velocities measured along the perimeter of each cortical specimen to a sinusoidal function. Results showed significant differences in elastic properties between different functional areas of the rhesus cranium, and that many sites have a consistent orientation of maximum stiffness among specimens. Overall, the cortical bones of the rhesus monkey skull can be modeled as orthotropic in many regions, and as transversely isotropic in some regions, e.g., the supraorbital region. There are differences from human crania, suggesting that structural differences in skeletal form relate to differences in cortical material properties across species. These differences also suggest that we require more comparative data on elastic properties in primate craniofacial skeletons to explore effectively the functional significance of these differences, especially when these differences are elucidated through modeling approaches, such as finite-element modeling.  相似文献   

16.
17.
Elastic constants, including the elastic modulus, the shear modulus, and Poisson's ratio, were measured on human craniofacial bone specimens obtained from the supraorbital region and the buccal surfaces of the mandibles of unembalmed cadavers. Constants were determined using an ultrasonic wave technique in three directions relative to the surface of each sample: 1) normal, 2) tangential, and 3) longitudinal. Statistical analysis of these elastic constants indicated that significant differences in the relative proportions of elastic properties existed between the regions. Bone from the mandible along its longitudinal axis was stiffer than bone from the supraorbital region. Directional differences in both locations demonstrated that cranial bone was not elastically isotropic. It is suggested that differences in elastic properties correspond to regional differences in function. © 1993 Wiley-Liss, Inc.  相似文献   

18.
This work was concerned with the numerical simulation of the behaviour of aortic valves whose material can be modelled as non-linear elastic anisotropic. Linear elastic models for the valve leaflets with parameters used in previous studies were compared with hyperelastic models, incorporating leaflet anisotropy with pronounced stiffness in the circumferential direction through a transverse isotropic model. The parameters for the hyperelastic models were obtained from fits to results of orthogonal uniaxial tensile tests on porcine aortic valve leaflets. The computational results indicated the significant impact of transverse isotropy and hyperelastic effects on leaflet mechanics; in particular, increased coaptation with peak values of stress and strain in the elastic limit. The alignment of maximum principal stresses in all models follows approximately the coarse collagen fibre distribution found in aortic valve leaflets. The non-linear elastic leaflets also demonstrated more evenly distributed stress and strain which appears relevant to long-term scaffold stability and mechanotransduction.  相似文献   

19.
This work consists of the validation of a novel approach to estimate the local anisotropic elastic constants of the bone extracellular matrix using nanoindentation. For this purpose, nanoindentation on two planes of material symmetry were analyzed and the resulting longitudinal elastic moduli compared to the moduli measured with a macroscopic tensile test. A combined lathe and tensile system was designed that allows machining and testing of cylindrical microspecimens of approximately 4mm in length and 300 microm in diameter. Three bovine specimens were tested in tension and their outer geometry and porosity assessed by synchrotron radiation microtomography. Based on the results of the traction test and the precise outer geometry, an apparent longitudinal Young's modulus was calculated. Results between 20.3 and 27.6 GPa were found that match with previously reported values for bovine compact bone. The same specimens were then characterized by nanoindentation on a transverse and longitudinal plane. A longitudinal Young's modulus for the bone matrix was then derived using the numerical scheme proposed by Swadener and Pharr and the fabric-elasticity relationship by Zysset and Curnier. Based on the matrix modulus and a power law effective volume fraction, an apparent longitudinal Young's modulus was predicted for each microspecimen. This alternative approach provided values between 19.9 and 30.0 GPa, demonstrating differences between 2% and 13% to the values provided by the initial tensile test. This study therefore raises confidence in our nanoindentation protocol of the bone extracellular matrix and supports the underlying hypotheses used to extract the anisotropic elastic constants.  相似文献   

20.
Dentin constitutes the major part of human tooth. It is composed of a large number of tubules with both variational radii and radially parallel pattern. In addition, peritubular dentin surrounds each tubule lumen and has a higher elastic modulus than the matrix of dentin, i.e. intertubular dentin. Considering the above microstructural characteristics, a micromechanics model is used in this paper to evaluate the overall elastic properties of dentin. Five independent effective elastic parameters in transverse isotropic elasticity matrix can be expressed analytically by the material parameters of peri- and intertubular dentin and the volume fraction of tubules. To determine the effectivity of this theoretical model, a finite element (FE) model simulating a longitudinal tooth slice in moire fringe testing of Wang and Weiner (J. Biomech. 31 (1998) 135) was performed. Furthermore, the FE model was developed incorporate modeling of variation of tubule's diameter and softer characteristic of intertubular dentin near the dentin-enamel junction and around the pulp chamber. It turned out that the isoline figure of longitudinal displacement by FE calculation has very similar patterns to the moire fringe results. However, the FE results of displacement by traditional stress-strain models which regard dentin as a homogeneous and isotropic material show an obviously different strain distributions as compared to published moire fringes results. Thus the inhomogeneous and anisotropic model developed in this paper more accurately reflects the true physical nature of human dentin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号