共查询到20条相似文献,搜索用时 31 毫秒
1.
《Critical reviews in biochemistry and molecular biology》2013,48(2):142-167
AbstractThe expansion of repeated sequences is the cause of over 30 inherited genetic diseases, including Huntington disease, myotonic dystrophy (types 1 and 2), fragile X syndrome, many spinocerebellar ataxias, and some cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat expansions are dynamic, and disease inheritance and progression are influenced by the size and the rate of expansion. Thus, an understanding of the various cellular mechanisms that cooperate to control or promote repeat expansions is of interest to human health. In addition, the study of repeat expansion and contraction mechanisms has provided insight into how repair pathways operate in the context of structure-forming DNA, as well as insights into non-canonical roles for repair proteins. Here we review the mechanisms of repeat instability, with a special emphasis on the knowledge gained from the various model systems that have been developed to study this topic. We cover the repair pathways and proteins that operate to maintain genome stability, or in some cases cause instability, and the cross-talk and interactions between them. 相似文献
2.
3.
Renata M. A. Costa Patrícia G. Morgante Carolina M. Berra Myna Nakabashi Dominique Bruneau David Bouchez Kevin S. Sweder Marie-Anne Van Sluys Carlos F. M. Menck 《The Plant journal : for cell and molecular biology》2001,28(4):385-395
Nucleotide excision repair in Arabidopsis thaliana differs from other eukaryotes as it contains two paralogous copies of the corresponding XPB/RAD25 gene. In this work, the functional characterization of one copy, AtXPB1, is presented. The plant gene was able to partially complement the UV sensitivity of a yeast rad25 mutant strain, thus confirming its involvement in nucleotide excision repair. The biological role of AtXPB1 protein in A. thaliana was further ascertained by obtaining a homozygous mutant plant containing the AtXPB1 genomic sequence interrupted by a T-DNA insertion. The 3' end of the mutant gene is disrupted, generating the expression of a truncated mRNA molecule. Despite the normal morphology, the mutant plants presented developmental delay, lower seed viability and a loss of germination synchrony. These plants also manifested increased sensitivity to continuous exposure to the alkylating agent MMS, thus suggesting inefficient DNA damage removal. These results indicate that, although the duplication seems to be recent, the features described for the mutant plant imply some functional or timing expression divergence between the paralogous AtXPB genes. The AtXPB1 protein function in nucleotide excision repair is probably required for the removal of lesions during seed storage, germination and early plant development. 相似文献
4.
Mary N. Mohankumar S. Janani B. Karthikeya Prabhu P. R. Vivek Kumar R. K. Jeevanram 《Mutation Research - Genetic Toxicology and Environmental Mutagenesis》2002,520(1-2):179-187
DNA damage was assessed in smoker lymphocytes by subjecting them to the single cell gel electrophoresis (SCGE) assay. In addition to the appearance of comet tails, smoker cells exhibited enlarged nuclei when analysed by the comet assay. On comparing basal DNA damage among smokers and a non-smoking control group, smoker lymphocytes showed higher basal DNA damage (smokers, 36.25±8.45 μm; non-smokers, 21.6±2.06 μm). A significant difference in DNA migration lengths was observed between the two groups at 10 min after UV exposure (smokers, 65.5±20.34 μm; non-smokers, 79.2±11.59 μm), but no significant differences were seen at 30 min after UV exposure (smokers, 21.13±10.73 μm; non-smokers, (27.2±4.13 μm). The study thus implies that cigarette smoking perhaps interferes with the incision steps of the nucleotide excision repair (NER) process. There appeared be no correlation between the frequency of smoking and DNA damage or the capacity of the cells to repair UV-induced DNA damage that suggests inherited host factors may be responsible for the inter-individual differences in DNA repair capacities. The study also suggests monitoring NER following UV insult using the SCGE assay is a sensitive and simple method to assess DNA damage and integrity of DNA repair in human cells exposed to chemical mutagens. 相似文献
5.
Sugasawa K 《Journal of molecular histology》2006,37(5-7):189-202
The DNA nucleotide excision repair (NER) system is our major defense against carcinogenesis. Defects in NER are associated with several human genetic disorders including xeroderma pigmentosum (XP), which is characterized by a marked predisposition to skin cancer. For initiation of the repair reaction at the genome-wide level, a complex containing one of the gene products involved in XP, the XPC protein, must bind to the damaged DNA site. The UV-damaged DNA-binding protein (UV-DDB), which is impaired in XP group E patients, has also been implicated in damage recognition in global genomic NER, but its precise functions and its relationship to the XPC complex have not been elucidated. However, the recent discovery of the association of UV-DDB with a cullin-based ubiquitin ligase has functionally linked the two damage recognition factors and shed light on novel mechanistic and regulatory aspects of global genomic NER. This article summarizes our current knowledge of the properties of the XPC complex and UV-DDB and discusses possible roles for ubiquitylation in the molecular mechanisms that underlie the efficient recognition and repair of DNA damage, particularly that induced by ultraviolet light irradiation, in preventing damage-induced mutagenesis as well as carcinogenesis. 相似文献
6.
Akutsu N Iijima K Hinata T Tauchi H 《Biochemical and biophysical research communications》2007,353(2):394-398
The Nbs1 gene is known to code for a protein involved in the hereditary cancer-prone disease, Nijmegen breakage syndrome. This gene is conserved in animals and fungi, but no plant homolog is known. The work reported here describes a homolog of Nbs1 isolated from higher plants. The Nbs1 proteins from both Arabidopsis thaliana and Oryza sativa are smaller in size than animal or yeast Nbs1, but both contain the conserved Nbs1 domains such as the FHA/BRCT domain, the Mre11-binding domain, and the Atm-interacting domain in orientations similar to what is seen in animal Nbs1. The OsNbs1 protein interacted not only with plant Mre11, but also with animal Mre11. In plants, OsNbs1 mRNA expression was found to be higher in the shoot apex and young flower, and AtNbs1 expression increased when plants were exposed to 100 Gy of X-rays. These results suggest that plant Nbs1 could participate in a Rad50/Mre11/Nbs1 complex, and could be essential for the regulation of DNA recombination and DNA damage responses. 相似文献
7.
Tuan Hoang Dong-Kug Choi Makiko Nagai Du-Chu Wu Tetsuya Nagata Delphine Prou Glenn L. Wilson Miquel Vila Vernice Jackson-Lewis Valina L. Dawson Ted M. Dawson Marie-Franoise Chesselet Serge Przedborski 《Free radical biology & medicine》2009,47(7):1049-1056
DNA damage is a proposed pathogenic factor in neurodegenerative disorders such as Parkinson disease. To probe the underpinning mechanism of such neuronal perturbation, we sought to produce an experimental model of DNA damage. We thus first assessed DNA damage by in situ nick translation and emulsion autoradiography in the mouse brain after administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 4 × 20 mg/kg, ip, every 2 h), a neurotoxin known to produce a model of Parkinson disease. Here we show that DNA strand breaks occur in vivo in this mouse model of Parkinson disease with kinetics and a topography that parallel the degeneration of substantia nigra neurons, as assessed by FluoroJade labeling. Previously, nitric oxide synthase and cyclooxygenase-2 (Cox-2) were found to modulate MPTP-induced dopaminergic neuronal death. We thus assessed the contribution of these enzymes to DNA damage in mice lacking neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), or Cox-2. We found that the lack of Cox-2 and nNOS activities but not of iNOS activity attenuated MPTP-related DNA damage. We also found that not only nuclear, but also mitochondrial, DNA is a target for the MPTP insult. These results suggest that the loss of genomic integrity can be triggered by the concerted actions of nNOS and Cox-2 and provide further support to the view that DNA damage may contribute to the neurodegenerative process in Parkinson disease. 相似文献
8.
N‐acetylcysteine normalizes the urea cycle and DNA repair in cells from patients with Batten disease
Batten disease is an inherited disorder characterized by early onset neurodegeneration due to the mutation of the CLN3 gene. The function of the CLN3 protein is not clear, but an association with oxidative stress has been proposed. Oxidative stress and DNA damage play critical roles in the pathogenesis of neurodegenerative diseases. Antioxidants are of interest because of their therapeutic potential for treating neurodegenerative diseases. We tested whether N‐acetylcysteine (NAC), a well‐known antioxidant, improves the pathology of cells from patients with Batten disease. At first, the expression levels of urea cycle components and DNA repair enzymes were compared between Batten disease cells and normal cells. We used both mRNA expression levels and Western blot analysis. We found that carbamoyl phosphate synthetase 1, an enzyme involved in the urea cycle, 8‐oxoguanine DNA glycosylase 1 and DNA polymerase beta, enzymes involved in DNA repair, were expressed at higher levels in Batten disease cells than in normal cells. The treatment of Batten disease cells with NAC for 48 h attenuated activities of the urea cycle and of DNA repair, as indicated by the substantially decreased expression levels of carbamoyl phosphate synthetase 1, 8‐oxoguanine DNA glycosylase 1 and DNA polymerase beta proteins compared with untreated Batten cells. NAC may serve in alleviating the burden of urea cycle and DNA repair processes in Batten disease cells. We propose that NAC may have beneficial effects in patients with Batten disease. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
9.
DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity 总被引:1,自引:0,他引:1
As obligate phototrophs, plants harness energy from sunlight to split water, producing oxygen and reducing power. This lifestyle exposes plants to particularly high levels of genotoxic stress that threatens genomic integrity, leading to mutation, developmental arrest and cell death. Plants, which with algae are the only photosynthetic eukaryotes, have evolved very effective pathways for DNA damage signalling and repair, and this review summarises our current understanding of these processes in the responses of plants to genotoxic stress. We also identify how the use of new and emerging technologies can complement established physiological and ecological studies to progress the application of this knowledge in biotechnology. 相似文献
10.
11.
Emily J. MacFadyen Craig E. Williamson Gabriella Grad Megan Lowery† Wade H. Jeffrey‡ David L. Mitchell† 《Global Change Biology》2004,10(4):408-416
In temperate lakes, asynchronous cycles in surface water temperatures and incident ultraviolet (UV) radiation expose aquatic organisms to damaging UV radiation at different temperatures. The enzyme systems that repair UV‐induced DNA damage are temperature dependent, and thus potentially less effective at repairing DNA damage at lower temperatures. This hypothesis was tested by examining the levels of UV‐induced DNA damage in the freshwater crustacean Daphnia pulicaria in the presence and absence of longer‐wavelength photoreactivating radiation (PRR) that induces photoenzymatic repair (PER) of DNA damage. By exposing both live and dead (freeze‐killed) Daphnia as well as raw DNA to UV‐B in the presence and absence of PRR, we were able to estimate the relative importance and temperature dependence of PER (light repair), nucleotide excision repair (NER, dark repair), and photoprotection (PP). Total DNA damage increased with increasing temperature. However, the even greater increase in DNA repair rates at higher temperatures led net DNA damage (total DNA damage minus repair) to be greater at lower temperatures. Photoprotection accounted for a much greater proportion of the reduction in DNA damage than did repair. Experiments that looked at survival rates following UV exposure demonstrated that PER increased survival rates. The important implication is that aquatic organisms that depend heavily on DNA repair processes may be less able to survive high UV exposure in low temperature environments. Photoprotection may be more effective under the low temperature, high UV conditions such as are found in early spring or at high elevations. 相似文献
12.
13.
One of the best-studied populations with regard to Chagas disease is from the coastal area of northern Chile at the foot of the western Andean slopes. The extremely arid climate here generates rapid, spontaneous desiccation of buried bodies, arresting the decay process. The absence of rainfall then preserves these dried bodies (mummies) for millennia. The aim of the present study was to perform the first molecular paleoepidemiological study on a set of 43 mummified human remains from the Atacama Desert in Northern Chile in order to elucidate the transmission dynamics and determinants of ancient genotypes, to try to unravel the natural history of the Trypanosoma cruzi taxon and Chagas disease. Interestingly, TcBat, a recently described Discrete Taxonomic Unit, emerges as the plausible ancestor of T. cruzi. The findings herein presented allow us to present a plausible model of T. cruzi transmission in pre-Columbian civilisations. 相似文献
14.
15.
Brewerton SC Doré AS Drake AC Leuther KK Blundell TL 《Journal of structural biology》2004,145(3):295-306
DNA-dependent protein kinase (DNA-PK) is part of the eukaryotic DNA double strand break repair pathway and as such is crucial for maintenance of genomic stability, as well as for V(D)J (variable-diversity-joining) recombination. The catalytic subunit of DNA-PK (DNA-PKcs) belongs to the phosphatidylinositol-3 (PI-3) kinase-like kinase (PIKK) superfamily and is comprised of approximately 4100 amino acids. We have used a novel repeat detection method to analyse this enormous protein and have identified two different types of helical repeat motifs in the N-terminal region of the sequence, as well as other previously unreported features in this repeat region. A comparison with the ATMs, ATRs, and TORs show that the features identified are likely to be conserved throughout the PIKK superfamily. Homology modelling of parts of the DNA-PKcs sequence has been undertaken and we have been able to fit the models to previously obtained electron microscopy data. This work provides an insight into the overall architecture of the DNA-PKcs protein and identifies regions of interest for further experimental studies. 相似文献
16.
17.
R. Navanietha Krishnaraj S. S. Sreeja Kumari Sudit Sekhar Mukhopadhyay 《Journal of receptor and signal transduction research》2016,36(1):67-71
Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS) are progressive neurodegenerative diseases that affect the neurons in the brain and the spinal cord. Neuroinflamation and apoptosis are key players in the progressive damage of the neurons in AD and ALS. Currently, there is no drug to offer complete cure for both these diseases. Riluzole is the only available drug that can prolong the life time of the ALS patients for nearly 3 months. Molecules that offer good HIT to the molecular targets of ALS will help to treat AD and ALS patients. P53 kinase receptor (4AT3), EphA4 (3CKH) and histone deacetylase (3SFF) are the promising disease targets of AD and ALS. This paper discusses on a new approach to combat neurodegenerative diseases using photosynthetic pigments. The docking studies were performed with the Autodock Vina algorithm to predict the binding of the natural pigments such as β carotene, chlorophyll a, chlorophyll b, phycoerythrin and phycocyanin on these targets. The β carotene, phycoerythrin and phycocyanin had higher binding energies indicating the antagonistic activity to the disease targets. These pigments serve as a potential therapeutic molecule to treat neuroinflammation and apoptosis in the AD and ALS patients. 相似文献
18.
The RAD4 gene of Saccharomyces cerevisiae is required for the incision of damaged DNA during nucleotide excision repair. Plasmids carrying the wild-type RAD4 gene cannot be propagated in Escherichia coli. In this study, a rad4 mutant that can be grown in E. coli was isolated. This rad4 allele is deleted of a large positively charged segment of the RAD4 coding region which is toxic to E. coli when expressed alone. The deletion mutant retains its ability to interact with Rad23 protein but not with Rad7 protein and is defective in nucleotide excision repair. The smallest Rad4 fragment that is toxic to E. coli consists of 336 amino acids with a calculated pI = 9.99. 相似文献
19.
Semra Doğru‐Abbasoğlu Sevda Tanrıkulu Evin Ademoğlu Yeşim Erbil Ayşenur Özderya Berrin Karadağ Müjdat Uysal 《Cell biochemistry and function》2009,27(7):462-467
Oxidative stress has been implicated in etiopathogenesis of Graves' disease (GD). Increased lipid peroxidation and oxidative DNA damage have been found in GD patients. Oxidative DNA damage is mainly repaired by the base‐excision repair (BER) pathway. Polymorphisms in DNA‐repair genes have been associated with the increased risk of various diseases and could also be related to the etiology of GD. Therefore, we conducted a study including 197 patients with GD and age‐ and sex‐matched 303 healthy subjects to examine the role of single‐nucleotide polymorphisms of BER genes, APE/Ref‐1 (codon 148) and XRCC1 (codons 194 and 399) as a risk factor for GD. These polymorphisms were determined by quantitative real‐time PCR and melting curve analysis using LightCycler. No significant association was observed between the variant alleles of APE/Ref‐1 codon 148 [odds ratio (OR) = 0.89, 95% confidence interval (CI) = 0.69–1.17], XRCC1 codon 194 (OR = 1.24, 95% CI = 0.79–1.94), and XRCC1 codon 399 (OR = 1.12, 95% CI = 0.86–1.46) and GD. These preliminary results suggest that APE/Ref‐1 (codon 148) and XRCC1 (codons 194 and 399) polymorphisms are not significant risk factors for developing GD. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
20.
Down syndrome (DS) is one of the most common causes of intellectual disability, owing to trisomy of all or part of chromosome 21. DS is also associated with the development of Alzheimer disease (AD) neuropathology after the age of 40 years. To better clarify the cellular and metabolic pathways that could contribute to the differences in DS brain, in particular those involved in the onset of neurodegeneration, we analyzed the frontal cortex of DS subjects with or without significant AD pathology in comparison with age-matched controls, using a proteomics approach. Proteomics represents an advantageous tool to investigate the molecular mechanisms underlying the disease. From these analyses, we investigated the effects that age, DS, and AD neuropathology could have on protein expression levels. Our results show overlapping and independent molecular pathways (including energy metabolism, oxidative damage, protein synthesis, and autophagy) contributing to DS, to aging, and to the presence of AD pathology in DS. Investigation of pathomechanisms involved in DS with AD may provide putative targets for therapeutic approaches to slow the development of AD. 相似文献