首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An HIV-1 vaccine remains elusive, in part because various factors limit the quantity and quality of the antibodies raised against the viral envelope glycoprotein complex (Env). We hypothesized that targeting Env vaccines directly to B cells, by fusing them to molecules that bind and activate these cells, would improve Env-specific antibody responses. Therefore, we fused trimeric Env gp140 to A PRoliferation-Inducing Ligand (APRIL), B-cell Activating Factor (BAFF), and CD40 Ligand (CD40L). The Env-APRIL, Env-BAFF, and Env-CD40L gp140 trimers all enhanced the expression of activation-induced cytidine deaminase (AID), the enzyme responsible for inducing somatic hypermutation, antibody affinity maturation, and antibody class switching. They also triggered IgM, IgG, and IgA secretion from human B cells in vitro. The Env-APRIL trimers induced higher anti-Env antibody responses in rabbits, including neutralizing antibodies against tier 1 viruses. The enhanced Env-specific responses were not associated with a general increase in total plasma antibody concentrations, indicating that the effect of APRIL was specific for Env. All the rabbit sera raised against gp140 trimers, irrespective of the presence of CD40L, BAFF, or APRIL, recognized trimeric Env efficiently, whereas sera raised against gp120 monomers did not. The levels of trimer-binding and virus-neutralizing antibodies were strongly correlated, suggesting that gp140 trimers are superior to gp120 monomers as immunogens. Targeting and activating B cells with a trimeric HIV-1 Env-APRIL fusion protein may therefore improve the induction of humoral immunity against HIV-1.  相似文献   

2.

Background

There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated.

Methods

The recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets.

Results

Robust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization.

Conclusions

The Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical trials.  相似文献   

3.
Based on the partial efficacy of the HIV/AIDS Thai trial (RV144) with a canarypox vector prime and protein boost, attenuated poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS. Here we describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C). MVA-C infection of human monocyte derived dendritic cells (moDCs) induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2, and CD80 molecules. Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8 T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses that are polyfunctional and with effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/MVA-C boost. Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the world.  相似文献   

4.
Newcastle disease virus (NDV) expressing HIV-1 BaL gp160 was evaluated either alone or with monomeric BaL gp120 and BaL SOSIP gp140 protein in a prime-boost combination in guinea pigs to enhance envelope (Env)-specific humoral and mucosal immune responses. We showed that a regimen consisting of an NDV prime followed by a protein boost elicited stronger serum and mucosal Th-1-biased IgG responses and neutralizing antibody responses than NDV-only immunizations. Additionally, these responses were higher after the gp120 than after the SOSIP gp140 protein boost.  相似文献   

5.
We isolated HIV-1 Envelope (Env)-specific memory B cells from a cow that had developed high titer polyclonal immunoglobulin G (IgG) with broad neutralizing activity after a long duration vaccination with HIV-1AD8 Env gp140 trimers. We cloned the bovine IgG matched heavy (H) and light (L) chain variable (V) genes from these memory B cells and constructed IgG monoclonal antibodies (mAbs) with either a human constant (C)-region/bovine V-region chimeric or fully bovine C and V regions. Among 42 selected Ig+ memory B cells, two mAbs (6A and 8C) showed high affinity binding to gp140 Env. Characterization of both the fully bovine and human chimeric isoforms of these two mAbs revealed them as highly type-specific and capable of binding only to soluble AD8 uncleaved gp140 trimers and covalently stabilized AD8 SOSIP gp140 cleaved trimers, but not monomeric gp120. Genomic sequence analysis of the V genes showed the third heavy complementarity-determining region (CDRH3) of 6A mAb was 21 amino acids in length while 8C CDRH3 was 14 amino acids long. The entire V heavy (VH) region was 27% and 25% diverged for 6A and 8C, respectively, from the best matched germline V genes available, and the CDRH3 regions of 6A and 8C were 47.62% and 78.57% somatically mutated, respectively, suggesting a high level of somatic hypermutation compared with CDRH3 of other species. Alanine mutagenesis of the VH genes of 6A and 8C, showed that CDRH3 cysteine and tryptophan amino acids were crucial for antigen binding. Therefore, these bovine vaccine-induced anti-HIV antibodies shared some of the notable structural features of elite human broadly neutralizing antibodies, such as CDRH3 size and somatic mutation during affinity-maturation. However, while the 6A and 8C mAbs inhibited soluble CD4 binding to gp140 Env, they did not recapitulate the neutralizing activity of the polyclonal antibodies against HIV infection.  相似文献   

6.
Experimental vaccine antigens based upon the HIV-1 envelope glycoproteins (Env) have failed to induce neutralizing antibodies (NAbs) against the majority of circulating viral strains as a result of antibody evasion mechanisms, including amino acid variability and conformational instability. A potential vaccine design strategy is to stabilize Env, thereby focusing antibody responses on constitutively exposed, conserved surfaces, such as the CD4 binding site (CD4bs). Here, we show that a largely trimeric form of soluble Env can be stably cross-linked with glutaraldehyde (GLA) without global modification of antigenicity. Cross-linking largely conserved binding of all potent broadly neutralizing antibodies (bNAbs) tested, including CD4bs-specific VRC01 and HJ16, but reduced binding of several non- or weakly neutralizing antibodies and soluble CD4 (sCD4). Adjuvanted administration of cross-linked or unmodified gp140 to rabbits generated indistinguishable total gp140-specific serum IgG binding titers. However, sera from animals receiving cross-linked gp140 showed significantly increased CD4bs-specific antibody binding compared to animals receiving unmodified gp140. Moreover, peptide mapping of sera from animals receiving cross-linked gp140 revealed increased binding to gp120 C1 and V1V2 regions. Finally, neutralization titers were significantly elevated in sera from animals receiving cross-linked gp140 rather than unmodified gp140. We conclude that cross-linking favors antigen stability, imparts antigenic modifications that selectively refocus antibody specificity and improves induction of NAbs, and might be a useful strategy for future vaccine design.  相似文献   

7.
The humoral immune response to human immunodeficiency virus type 1 (HIV-1) is often studied by using monomeric or denatured envelope proteins (Env). However, native HIV-1 Env complexes that maintain quaternary structure elicit immune responses that are qualitatively distinct from those seen with monomeric or denatured Env. To more accurately assess the levels and types of antibodies elicited by HIV-1 infection, we developed an antigen capture enzyme-linked immunosorbent assay using a soluble, oligomeric form of HIV-1IIIB Env (gp140) that contains gp120 and the gp41 ectodomain. The gp140, captured by various monoclonal antibodies (MAbs), retained its native oligomeric structure: it bound CD4 and was recognized by MAbs to conformational epitopes in gp120 and gp41, including oligomer-specific epitopes in gp41. We compared the reactivities of clade B and clade E serum samples to captured Env preparations and found that while both reacted equally well with oligomeric gp140, clade B seras reacted more strongly with monomeric gp120 than did clade E samples. However, these differences were minimized when gp120 was captured by a V3 loop MAb, which may lead to increased exposure of the CD4 binding site. We also measured the ability of serum samples to block binding of MAbs to epitopes in gp120 and gp41. Clade B serum samples consistently blocked binding of oligomer-dependent MAbs to gp41 and, to a slightly lesser extent, MAbs to the CD4 binding site in gp120. Clade E serum samples showed equivalent or greater blocking of oligomer-dependent gp41 antibodies and considerably less blocking of CD4-binding-site MAbs. Finally, we found that < 5% of the antibodies in clade B sera bound to epitopes present only in monomeric gp120, 30% bound to epitopes present in both monomeric gp120 and oligomeric gp140, and 70% bound to epitopes present in oligomeric gp140, which includes gp41. Thus, captured oligomeric Env closely reflects the antigenic characteristics of Env protein on the surface of virions and infected cells, retains highly conserved epitopes that are recognized by antibodies raised against different clades, and makes it possible to detect a much greater fraction of total anti-HIV-1 Env activity in sera than does native monomeric gp120.  相似文献   

8.
Understanding the antibody response to HIV-1 in humans that show broad neutralizing serologic activity is a crucial step in trying to reproduce such responses by vaccination. Investigating antibodies with cross clade reactivity is particularly important as these antibodies may target conserved epitopes on the HIV envelope gp160 protein. To this end we have used a clade B YU-2 gp140 trimeric antigen and single-cell antibody cloning methods to obtain 189 new anti-gp140 antibodies representing 51 independent B cell clones from the IgG memory B cells of 3 patients infected with HIV-1 clade A or B viruses and exhibiting broad neutralizing serologic activity. Our results support previous findings showing a diverse antibody response to HIV gp140 envelope protein, characterized by differentially expanded B-cell clones producing highly hypermutated antibodies with heterogenous gp140-specificity and neutralizing activity. In addition to their high-affinity binding to the HIV spike, the vast majority of the new anti-gp140 antibodies are also polyreactive. Although none of the new antibodies are as broad or potent as VRC01 or PG9, two clonally-related antibodies isolated from a clade A HIV-1 infected donor, directed against the gp120 variable loop 3, rank in the top 5% of the neutralizers identified in our large collection of 185 unique gp140-specific antibodies in terms of breadth and potency.  相似文献   

9.
The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) is composed of two noncovalently associated subunits: an extracellular subunit (gp120) and a transmembrane subunit (gp41). The functional unit of Env on the surface of infectious virions is a trimer of gp120/gp41 heterodimers. Env is the target of anti-HIV neutralizing antibodies. A considerable effort has been invested in the engineering of recombinant soluble forms of the virion-associated Env trimer as vaccine candidates to elicit anti-HIV neutralizing antibody responses. These soluble constructs contain three gp120 subunits and the extracellular segments of the corresponding gp41 subunits. The individual gp120/gp41 protomers on these soluble trimers are identical in amino acid sequence (homotrimers). Here, we engineered novel soluble trimeric gp140 proteins that are formed by the association of gp140 protomers that differ in amino acid sequence and glycosylation patterns (heterotrimers). Specifically, we engineered soluble heterotrimeric proteins composed of clade A and clade B Env protomers. The clade A gp140 protomers were derived from viruses isolated during acute infection (Q168a2, Q259d2.17, and Q461e2), whereas the clade B gp140 protomers were derived from a virus isolated during chronic infection (SF162). The amino acid sequence divergence between the clade A and the clade B Envs is approximately 24%. Neutralization epitopes in the CD4 binding sites and coreceptor binding sites, as well as the membrane-proximal external region (MPER), were differentially expressed on the heterotrimeric and homotrimeric proteins. The heterotrimeric gp140s elicited broader anti-tier 1 isolate neutralizing antibody responses than did the homotrimeric gp140s.  相似文献   

10.
For protection from HIV-1 infection, a vaccine should elicit both humoral and cell-mediated immune responses. A novel vaccine regimen and adjuvant that induce high levels of HIV-1 Env-specific T cell and antibody (Ab) responses was developed in this study. The prime-boost regimen that used combinations of replication-competent vaccinia LC16m8Δ (m8Δ) and Sendai virus (SeV) vectors expressing HIV-1 Env efficiently produced both Env-specific CD8+ T cells and anti-Env antibodies, including neutralizing antibodies (nAbs). These results sharply contrast with vaccine regimens that prime with an Env expressing plasmid and boost with the m8Δ or SeV vector that mainly elicited cellular immunities. Moreover, co-priming with combinations of m8Δs expressing Env or a membrane-bound human CD40 ligand mutant (CD40Lm) enhanced Env-specific CD8+ T cell production, but not anti-Env antibody production. In contrast, priming with an m8Δ that coexpresses CD40Lm and Env elicited more anti-Env Abs with higher avidity, but did not promote T cell responses. These results suggest that the m8Δ prime/SeV boost regimen in conjunction with CD40Lm expression could be used as an immunization platform for driving both potent cellular and humoral immunities against pathogens such as HIV-1.  相似文献   

11.
The HIV-1 gp41 envelope (Env) membrane proximal external region (MPER) is an important vaccine target that in rare subjects can elicit neutralizing antibodies. One mechanism proposed for rarity of MPER neutralizing antibody generation is lack of reverted unmutated ancestor (putative naive B cell receptor) antibody reactivity with HIV-1 envelope. We have studied the effect of partial deglycosylation under non-denaturing (native) conditions on gp140 Env antigenicity for MPER neutralizing antibodies and their reverted unmutated ancestor antibodies. We found that native deglycosylation of clade B JRFL gp140 as well as group M consensus gp140 Env CON-S selectively increased the reactivity of Env with the broad neutralizing human mAbs, 2F5 and 4E10. Whereas fully glycosylated gp140 Env either did not bind (JRFL), or weakly bound (CON-S), 2F5 and 4E10 reverted unmutated ancestors, natively deglycosylated JRFL and CON-S gp140 Envs did bind well to these putative mimics of naive B cell receptors. These data predict that partially deglycoslated Env would bind better than fully glycosylated Env to gp41-specific naïve B cells with improved immunogenicity. In this regard, immunization of rhesus macaques demonstrated enhanced immunogenicity of the 2F5 MPER epitope on deglyosylated JRFL gp140 compared to glycosylated JRFL gp140. Thus, the lack of 2F5 and 4E10 reverted unmutated ancestor binding to gp140 Env may not always be due to lack of unmutated ancestor antibody reactivity with gp41 peptide epitopes, but rather, may be due to glycan interference of binding of unmutated ancestor antibodies of broad neutralizing mAb to Env gp41.  相似文献   

12.
The most promising vaccine strategies for the induction of cytotoxic-T-lymphocyte responses have been heterologous prime/boost regimens employing a plasmid DNA prime and a live recombinant-vector boost. The priming immunogen in these regimens must elicit antigen-specific memory CD8+ T lymphocytes that will expand following the boosting immunization. Because plasmid DNA immunogens are expensive and their immunogenicity has proven disappointing in human clinical trials, we have been exploring novel priming immunogens that might be used in heterologous immunization regimens. Here we show that priming with a prototype recombinant Mycobacterium smegmatis strain expressing human immunodeficiency virus type 1 (HIV-1) gp120-elicited CD4+ T lymphocytes with a functional profile of helper cells as well as a CD8+ T-lymphocyte population. These CD8+ T lymphocytes rapidly differentiated to memory cells, defined on the basis of their cytokine profile and expression of CD62L and CD27. Moreover, these recombinant-mycobacterium-induced T lymphocytes rapidly expanded following boosting with a recombinant adenovirus expressing HIV-1 Env to gp120-specific CD8+ T lymphocytes. This work demonstrates a remarkable skewing of recombinant-mycobacterium-induced T lymphocytes to durable antigen-specific memory CD8+ T cells and suggests that such immunogens might be used as priming vectors in prime/boost vaccination regimens for the induction of cellular immune responses.  相似文献   

13.
The development of a vaccine against human immunodeficiency virus-1 (HIV-1) capable of inducing broad humoral and cellular responses at both the systemic and mucosal levels will be critical for combating the global AIDS epidemic. We previously demonstrated the ability of Newcastle disease virus (NDV) as a vaccine vector to express oligomeric Env protein gp160 and induce potent humoral and mucosal immune responses. In the present study, we used NDV vaccine strain LaSota as a vector to compare the biochemical and immunogenic properties of vector-expressed gp160, gp120, and two versions of gp140 (a derivative of gp160 made by deleting the transmembrane and cytoplasmic domains), namely: gp140L, which contained the complete membrane-proximal external region (MPER), and gp140S, which lacks the distal half of MPER. We show that, similar to gp160, NDV-expressed gp140S and gp120, but not gp140L, formed higher-order oligomers that retained recognition by conformationally sensitive monoclonal antibodies. Immunization of guinea pigs by the intranasal route with rLaSota/gp140S resulted in significantly greater systemic and mucosal antibody responses compared to the other recombinants. Immunization with rLaSota/140S, rLaSota/140L rLaSota/120 resulted in mixed Th1/Th2 immune responses as compared to Th1-biased immune responses induced by rLaSota/160. Importantly, rLaSota/gp140S induced neutralizing antibody responses to homologous HIV-1 strain BaL.26 and laboratory adapted HIV-1 strain MN.3 that were stronger than those elicited by the other NDV recombinants. Additionally, rLaSota/gp140S induced greater CD4+ and CD8+ T-cell responses in mice. These studies illustrate that rLaSota/gp140S is a promising vaccine candidate to elicit potent mucosal, humoral and cellular immune responses to the HIV-1 Env protein.  相似文献   

14.
A phase I clinical vaccine study of a human immunodeficiency virus type 1 (HIV-1) vaccine regimen comprising a DNA prime formulation (5-valent env and monovalent gag) followed by a 5-valent Env protein boost for seronegative adults was previously shown to induce HIV-1-specific T cells and anti-Env antibodies capable of neutralizing cross-clade viral isolates. In light of these initial findings, we sought to more fully characterize the HIV-1-specific T cells by using polychromatic flow cytometry. Three groups of participants were vaccinated three times with 1.2 mg of DNA administered intradermally (i.d.; group A), 1.2 mg of DNA administered intramuscularly (i.m.; group B), or 7.2 mg of DNA administered i.m. (high-dose group C) each time. Each group subsequently received one or two doses of 0.375 mg each of the gp120 protein boost vaccine (i.m.). Env-specific CD4 T-cell responses were seen in the majority of participants; however, the kinetics of responses differed depending on the route of DNA administration. The high i.m. dose induced the responses of the greatest magnitude after the DNA vaccinations, while the i.d. group exhibited the responses of the least magnitude. Nevertheless, after the second protein boost, the magnitude of CD4 T-cell responses in the i.d. group was indistinguishable from those in the other two groups. After the DNA vaccinations and the first protein boost, a greater number of polyfunctional Env-specific CD4 T cells (those with > or = 2 functions) were seen in the high-dose group than in the other groups. Gag-specific CD4 T cells and Env-specific CD8 T cells were seen only in the high-dose group. These findings demonstrate that the route and dose of DNA vaccines significantly impact the quality of immune responses, yielding important information for future vaccine design.  相似文献   

15.

Background

Many participants in microbicide trials remain uninfected despite ongoing exposure to HIV-1. Determining the emergence and nature of mucosal HIV-specific immune responses in such women is important, since these responses may contribute to protection and could provide insight for the rational design of HIV-1 vaccines.

Methods and Findings

We first conducted a pilot study to compare three sampling devices (Dacron swabs, flocked nylon swabs and Merocel sponges) for detection of HIV-1-specific IgG and IgA antibodies in vaginal secretions. IgG antibodies from HIV-1-positive women reacted broadly across the full panel of eight HIV-1 envelope (Env) antigens tested, whereas IgA antibodies only reacted to the gp41 subunit. No Env-reactive antibodies were detected in the HIV-negative women. The three sampling devices yielded equal HIV-1-specific antibody titers, as well as total IgG and IgA concentrations. We then tested vaginal Dacron swabs archived from 57 HIV seronegative women who participated in a microbicide efficacy trial in Southern Africa (HPTN 035). We detected vaginal IgA antibodies directed at HIV-1 Env gp120/gp140 in six of these women, and at gp41 in another three women, but did not detect Env-specific IgG antibodies in any women.

Conclusion

Vaginal secretions of HIV-1 infected women contained IgG reactivity to a broad range of Env antigens and IgA reactivity to gp41. In contrast, Env-binding antibodies in the vaginal secretions of HIV-1 uninfected women participating in the microbicide trial were restricted to the IgA subtype and were mostly directed at HIV-1 gp120/gp140.  相似文献   

16.
The identification and characterization of new human monoclonal antibodies (hMAbs) able to neutralize primary human immunodeficiency virus type 1 (HIV-1) isolates from different subtypes may help in our understanding of the mechanisms of virus entry and neutralization and in the development of entry inhibitors and vaccines. For enhanced selection of broadly cross-reactive antibodies, soluble HIV-1 envelope glycoproteins (Envs proteins) from two isolates complexed with two-domain soluble CD4 (sCD4) were alternated during panning of a phage-displayed human antibody library; these two Env proteins (89.6 and IIIB gp140s), and one additional Env (JR-FL gp120) alone and complexed with sCD4 were used for screening. An antibody with relatively long HCDR3 (17 residues), designated m14, was identified that bound to all antigens and neutralized heterologous HIV-1 isolates in multiple assay formats. Fab m14 potently neutralized selected well-characterized subtype B isolates, including JRCSF, 89.6, IIIB, and Yu2. Immunoglobulin G1 (IgG1) m14 was more potent than Fab m14 and neutralized 7 of 10 other clade B isolates; notably, although the potency was on average significantly lower than that of IgG1 b12, IgG1 m14 neutralized two of the isolates with significantly lower 50% inhibitory concentrations than did IgG1 b12. IgG1 m14 neutralized four of four selected clade C isolates with potency higher than that of IgG1 b12. It also neutralized 7 of 17 clade C isolates from southern Africa that were difficult to neutralize with other hMAbs and sCD4. IgG1 m14 neutralized four of seven primary HIV-1 isolates from other clades (A, D, E, and F) much more efficiently than did IgG1 b12; for the other three isolates, IgG b12 was much more potent. Fab m14 bound with high (nanomolar range) affinity to gp120 and gp140 from various isolates; its binding was reduced by soluble CD4 and antibodies recognizing the CD4 binding site (CD4bs) on gp120, and its footprint as defined by alanine-scanning mutagenesis overlaps that of b12. These results suggest that m14 is a novel CD4bs cross-reactive HIV-1-neutralizing antibody that exhibits a different inhibitory profile compared to the only known potent broadly neutralizing CD4bs human antibody, b12, and may have implications for our understanding of the mechanisms of immune evasion and for the development of inhibitors and vaccines.  相似文献   

17.
Host cell-mediated proteolytic cleavage of the human immunodeficiency virus type 1 (HIV-1) gp160 precursor glycoprotein into gp120 and gp41 subunits is required to generate fusion-competent envelope glycoprotein (Env) spikes. The gp120-directed broadly neutralizing monoclonal antibodies (bNabs) isolated from HIV-infected individuals efficiently recognize fully cleaved JRFL Env spikes; however, nonneutralizing gp120-directed monoclonal antibodies isolated from infected or vaccinated subjects recognize only uncleaved JRFL spikes. Therefore, as an immunogen, cleaved spikes that selectively present desired neutralizing epitopes to B cells may elicit cross-reactive neutralizing antibodies. Accordingly, we inoculated nonhuman primates (NHPs) with plasmid DNA encoding transmembrane-anchored, cleaved JRFL Env or by electroporation (EP). Priming with DNA expressing soluble, uncleaved gp140 trimers was included as a comparative experimental group of NHPs. DNA inoculation was followed by boosts with soluble JRFL gp140 trimers, and control NHPs were inoculated with soluble JRFL protein trimers without DNA priming. In the TZM-bl assay, elicitation of neutralizing antibodies against HIV-1 tier 1 isolates was robust following the protein boost. Neutralization of tier 2 isolates was detected, but only in animals primed with plasmid DNA and boosted with trimeric protein. Using the more sensitive A3R5 assay, consistent neutralization of both clade B and C tier 2 isolates was detected from all regimens assessed in the current study, exceeding levels achieved by our previous vaccine regimens in primates. Together, these data suggest a potential advantage of B cell priming followed by a rest interval and protein boosting to present JRFL Env spikes to the immune system to better generate HIV-1 cross-clade neutralizing antibodies.  相似文献   

18.
HIV-1 gp120 is an alleged B cell superantigen, binding certain VH3+ human antibodies. We reasoned that a CD4-VH3 fusion protein could possess higher affinity for gp120 and improved HIV-1 inhibitory capacity. To test this we produced several human IgG1 immunoligands harboring VH3. Unlike VH3-IgG1 or VH3-CD4-IgG1, CD4-VH3-IgG1 bound gp120 considerably stronger than CD4-IgG1. CD4-VH3-IgG1 exhibited ≈1.5-2.5-fold increase in neutralization of two T-cell laboratory-adapted strains when compared to CD4-IgG1. CD4-VH3-IgG1 improved neutralization of 7/10 clade B primary isolates or pseudoviruses, exceeding 20-fold for JR-FL and 13-fold for Ba-L. It enhanced neutralization of 4/8 clade C viruses, and had negligible effect on 1/4 clade A pseudoviruses. We attribute this improvement to possible pairing of VH3 with CD4 D1 and stabilization of an Ig Fv-like structure, rather than to superantigen interactions. These novel findings support the current notion that CD4 fusion proteins can act as better HIV-1 entry inhibitors with potential clinical implications.  相似文献   

19.
Genetic variation of human immunodeficiency virus (HIV-1) represents a major obstacle for AIDS vaccine development. To decrease the genetic distances between candidate immunogens and field virus strains, we have designed and synthesized an artificial group M consensus env gene (CON6 gene) to be equidistant from contemporary HIV-1 subtypes and recombinants. This novel envelope gene expresses a glycoprotein that binds soluble CD4, utilizes CCR5 but not CXCR4 as a coreceptor, and mediates HIV-1 entry. Key linear, conformational, and glycan-dependent monoclonal antibody epitopes are preserved in CON6, and the glycoprotein is recognized equally well by sera from individuals infected with different HIV-1 subtypes. When used as a DNA vaccine followed by a recombinant vaccinia virus boost in BALB/c mice, CON6 env gp120 and gp140CF elicited gamma interferon-producing T-cell responses that recognized epitopes within overlapping peptide pools from three HIV-1 Env proteins, CON6, MN (subtype B), and Chn19 (subtype C). Sera from guinea pigs immunized with recombinant CON6 Env gp120 and gp140CF glycoproteins weakly neutralized selected HIV-1 primary isolates. Thus, the computer-generated "consensus" env genes are capable of expressing envelope glycoproteins that retain the structural, functional, and immunogenic properties of wild-type HIV-1 envelopes.  相似文献   

20.
Currently there is limited information about the quality of immune responses elicited by candidate human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env)-based immunogens in primates. Here we describe a comprehensive analysis of neutralizing antibody and T-cell responses obtained in cynomolgus macaques by three selected immunization regimens. We used the previously described YU2-based gp140 protein trimers administered in an adjuvant, preceded by two distinct priming strategies: either alphavirus replicon particles expressing matched gp140 trimers or gp120 core proteins stabilized in the CD4-bound conformation. The rationale for priming with replicon particles was to evaluate the impact of the expression platform on trimer immunogenicity. The stable core proteins were chosen in an attempt to expand selectively lymphocytes recognizing common determinants between the core and trimers to broaden the immune response. The results presented here demonstrate that the platform by which Env trimers were delivered in the priming (either protein or replicon vector) had little impact on the overall immune response. In contrast, priming with stable core proteins followed by a trimer boost strikingly focused the T-cell response on the core sequences of HIV-1 Env. The specificity of the T-cell response was distinctly different from that of the responses obtained in animals immunized with trimers alone and was shown to be mediated by CD4+ T cells. However, this regimen showed limited or no improvement in the neutralizing antibody responses, suggesting that further immunogen design efforts are required to successfully focus the B-cell response on conserved neutralizing determinants of HIV-1 Env.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号