首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 526 毫秒
1.
The role of green sea urchin Strongylocentrotus droebachiensis as a source of fecal particulate organic matter (POM) for the benthic nearshore ecosystems has been studied over a 3.5-month period. Three macroalgae were tested as food sources: Alaria esculenta, Laminaria longicruris and Ulvaria obscura. Urchins were fed ad libitum with either a single alga species or a mixture of all three algae. Consumption and defecation rates were determined as well as the feces/alga ratio in term of biomass and biochemical composition. Consumption rate increased exponentially with urchin size and also varied with alga species. In the single alga trial, consumption rate was higher for both brown algae (Laminaria and Alaria) compared to Ulvaria. Urchins feeding on the mixture of algae maintained their total ingestion rate (sum of the three algae) at the same level to those feeding on a single alga diet. The mixed algae trial showed that urchins clearly preferred Laminaria (72% of total ingestion) over Alaria (22%) and Ulvaria (6%). The defecation rate was tightly correlated with the food consumption rate and thus increased with urchin size. On average, 75% of the ingested algal biomass was released as fecal POM. The percentage of food defecated changed with alga species, with the highest value for Alaria (81%) and the lowest for Laminaria (67%). The percentage of food defecated by urchins feeding on the mixture of algae was generally comparable to those feeding on single alga diet. Biochemical composition (in soluble carbohydrates, proteins and lipids) of urchin fecal POM reflected that of the algae content. From 40% to 80% of macronutrients in algal food persisted in fecal matter. This proportion varied with the alga species and macronutrient considered. This study shows that the green sea urchin plays a significant role in the production of POM within nearshore benthic ecosystems, and it is a potentially nutritious food source for detritivores.  相似文献   

2.
Feeding behaviour is influenced by a variety of factors, including nutritional requirements, the quality of available foods, and environmental conditions. We examined the effect of two factors, food morphology and dietary history, on the feeding rate and preference of the sea urchin Strongylocentrotus droebachiensis. Standardizing food shape and structure did not alter urchins' expected preference for the native kelp Laminaria longicruris over the invasive alga Codium fragile ssp. tomentosoides. However, when foods containing L. longicuris were shaped to mimic the algae, the C. fragile mimic was consumed more rapidly than the kelp mimic. Dietary history had no effect on single diet feeding rate. Urchins feeding on C. fragile consistently consumed twice as much (by mass) as those fed kelp, regardless of their previous diet. Despite higher feeding rates on C. fragile, urchins feeding on this alga were unable to compensate for its low energetic content and ingested less energy. Dietary history had a short-term effect on food preference, with urchins tending to prefer less familiar foods. Our findings suggest that urchins feed on C. fragile at a high rate, due to ease of handling and/or compensatory feeding, and that they do not a have strict preference hierarchy. Rather, food choice appears to reflect active maintenance of a mixed diet.  相似文献   

3.
4.
We ran field experiments to examine the responses of the black sea urchin Tetrapygus niger to predatory sea stars. Trials involving simulated attacks (one or several arms of a sea star being placed on top of half the urchin) showed that the urchin differentiated between the predatory sea stars, Heliaster helianthus and Meyenaster gelatinosus, and a non-predatory sea star, Stichaster striatus, and showed almost no response to a sea star mimic. We further compared the responses of the urchin to different threat levels presented by the two predatory sea stars. The highest threat level was a simulated attack, then mere contact, and subsequently sea stars being placed at different distances from the urchin. All urchins responded to simulated attacks and contact with both sea stars. The proportion responding decreased with distance and more rapidly in trials with H. helianthus (0% at a distance of 30 cm) than with M. gelatinosus (33% at a distance of 50 cm). At each of the threat levels where there was a response to both sea stars, the urchins responded more rapidly to M. gelatinosus than to H. helianthus. In a third experiment where a predatory sea star was added to a circular area (1-m diameter) in which either 4-8 or 11-19 undisturbed urchins were present, the urchins fled the area more rapidly when the added sea star was M. gelatinosus, but the rate of fleeing did not vary with density, as might occur if there was communication among urchins using alarm signals. Our observations suggest that M. gelatinosus presents a stronger predatory threat than H. helianthus. This corresponds to field observations showing that the urchins are more frequently consumed by M. gelatinosus. These are the first field experiments demonstrating distance chemodetection by a marine invertebrate under back-and-forth water flow from wave activity.  相似文献   

5.
The formation of sea urchin ‘barrens’ on shallow temperate rocky reefs is well documented. However there has been much conjecture about the underlying mechanisms leading to sea urchin barrens, and relatively little experimentation to test these ideas critically. We conducted a series of manipulative experiments to determine whether predation mortality is an important mechanism structuring populations of the sea urchin Heliocidaris erythrogramma in Tasmania. Tethered juvenile and adult sea urchins experienced much higher rates of mortality inside no-take marine reserves where sea urchin predators were abundant compared to adjacent fished areas where predators were fewer. Mortality of tagged (but not tethered) sea urchins was also notably higher in marine reserves than in adjacent areas open to fishing. When a range of sizes of sea urchins was exposed to three sizes of rock lobsters in a caging experiment, juvenile sea urchins were eaten more frequently than larger sea urchins by all sizes of rock lobster, but only the largest rock lobsters (> 120 mm CL) were able to consume large adult sea urchins. Tagging (but not tethering) juvenile and adult sea urchins in two separate marine reserves indicated that adult sea urchins experience higher predation mortality than juveniles, probably because juveniles can shelter in cryptic microhabitat more effectively. In a field experiment in which exposure of sea urchins to rock lobster (Jasus edwardsii) and demersal reef fish predators was manipulated, rock lobsters were shown to be more important than fish as predators of adult sea urchins in a marine reserve. We conclude that predators, and particularly rock lobsters, exert significant predation mortality on H. erythrogramma in Tasmanian marine reserves, and that adult sea urchins are more vulnerable than smaller cryptic individuals. Fishing of rock lobsters is likely to reduce an important component of mortality in H. erythrogramma populations.  相似文献   

6.
7.
Summary Population dynamics of the epizoic bivalve Lissarca notorcadensis living on spines of cidaroid sea urchins in the Weddell Sea were investigated. Total production (somatic & gonad) of the suspension feeding bivalve ranged between 16.5 and 487.4 mg AFDM y–1 per sea urchin. Annual sedimentation rates are not sufficient to maintain the production of the Lissarca sub-populations carried by the sea urchins, and resuspension of organic matter is most likely to be an important food source. The ratio of the number of freshly settled juveniles to the number of embryos brooded is between 0.054 and 0.207 and seems negatively related to the biomass already present, indicating intraspecific competition for space. Interspecific competition for space is caused by the strong preference of L. notorcadensis as well as other epizoa (colonial anthozoans and bryozoans) for the spines located on the aboral hemispere of the sea urchins.AWI Publication No. 572  相似文献   

8.
尤凯  曾晓起  陈大刚  刘群  张秀梅 《生态学报》2004,24(5):1006-1014
对采自青岛近岸海域的马粪海胆从其对各种饵料的选择和摄食吸收、温度与自身湿重对其摄食率的影响以及摄食活动特征等方面进行实验生态学研究。结果表明 ,马粪海胆在多种海藻并存的情况下 ,对海带及裙带菜等褐藻具明显的选择性 ,对石花菜及孔石莼等藻类的喜好性较差 ,但在食物匮乏条件下 ,马粪海胆的食谱则变得相当广泛。马粪海胆对裙带菜及海带的摄食率均明显高于孔石莼 ,但其对孔石莼的饵料吸收率则高于海带及裙带菜。马粪海胆的摄食受温度条件及自身湿重的影响 ,温度偏离适宜范围对摄食有抑制作用 ,日摄食率与湿重呈显著的指数下降关系 ,摄食率与湿重、温度因子可建立具较高可靠性的指数回归模型。马粪海胆对食物的口面吸附与对其摄食密切相关 ,其摄食活动与湿重呈显著的指数下降关系 ,而与排便活动呈显著的正相关 ,随湿重增加排便活动虽呈下降趋势 ,但未达显著水平。自然光照条件下马粪海胆的夜间摄食强度通常高于日间 ,但在全遮盖的无光照条件下这种昼夜摄食差异则变得不显著 ;对摄食活动的连续观测表明马粪海胆的摄食活动受光强变化的影响 ,其摄食活动的高峰出现在光强减弱的早间及傍晚 ,而日间的强光照环境会抑制其摄食活动  相似文献   

9.
Ecologically, sea urchins are an important species in marine habitats around the world. Economically, sea urchins are prized for their gonads (uni). With fisheries declining worldwide, intensive sea urchin culture has been proposed. For urchins in commercial culture, any factor that affects survivorship negatively should be addressed to maximize cost benefit. One potential obstacle to optimizing culture of sea urchins is cannibalism. Approximately 2000 adult and juvenile Lytechinus variegatus (1 g-45 g) were collected from Port Saint Joseph Peninsula State Park, FL between June and September 2009. Urchins were held in recirculating tanks at different sizes, densities, and feeding regimes for 4 weeks. Starvation and high density contributed to the highest level of cannibalism among small (12-21 g) urchins (percent cannibalism = 18.8%), whereas fed, high density conditions contributed to the highest level of cannibalism among large (32-37 g) urchins (percent cannibalism = 18.4%). These results suggest that (1) small urchins cannibalize at higher rates than large urchins, and (2) increased density is an important contributing factor leading to cannibalism. We quantified stress, defined as a decrease in production as a result of environmental conditions, by evaluating weight gain within each treatment and suggest that weight loss or minimal weight gain is an indicator of stress. We hypothesize increased stress caused by competitive interference can lead to increased cannibalism and decreased growth rates, even when food is not limiting. Ecologically, there are no reports of cannibalism of urchins in wild populations. Consequently, the role of cannibalism in regulating sea urchin community structure is not known. However, factors affecting cannibalism of L. variegatus in the laboratory may provide insight into the conditions that could result in cannibalism in wild populations. From an aquaculture perspective, it is important to determine those factors that contribute to the incidence of cannibalism in sea urchins so that the appropriate culture conditions can be maintained to reduce the incidence of cannibalism.  相似文献   

10.
Marine bioadhesives perform in ways that manmade products simply cannot match, especially in wet environments. Despite their technological potential, bioadhesive molecular mechanisms are still largely understudied, and sea urchin adhesion is no exception. These animals inhabit wave-swept shores, relying on specialized adhesive organs, tube feet, composed by an adhesive disc and a motile stem. The disc encloses a duo-gland adhesive system, producing adhesive and deadhesive secretions for strong reversible substratum attachment. The disclosure of sea urchin Paracentrotus lividus tube foot disc proteome led to the identification of a secreted adhesion protein, Nectin, never before reported in adult adhesive organs but, that given its adhesive function in eggs/embryos, was pointed out as a putative substratum adhesive protein in adults. To further understand Nectin involvement in sea urchin adhesion, Nectin cDNA was amplified for the first time from P. lividus adhesive organs, showing that not only the known Nectin mRNA, called Nectin-1 (GenBank AJ578435), is expressed in the adults tube feet but also a new mRNA sequence, called Nectin-2 (GenBank KT351732), differing in 15 missense nucleotide substitutions. Nectin genomic DNA was also obtained for the first time, indicating that both Nectin-1 and Nectin-2 derive from a single gene. In addition, expression analysis showed that both Nectins are overexpressed in tube feet discs, its expression being significantly higher in tube feet discs from sea urchins just after collection from the field relative to sea urchin from aquarium. These data further advocate for Nectin involvement in sea urchin reversible adhesion, suggesting that its expression might be regulated according to the hydrodynamic conditions.  相似文献   

11.
Plant–herbivore interactions have strong ecological and evolutionary consequences, but have been traditionally overlooked in marine higher plants. Despite recent advances in seagrass ecology that highlight the importance of herbivory, the mechanisms that regulate the feeding behaviour of seagrass consumers remain largely unknown. Herbivores have been shown to reduce the sexual reproductive success of seagrasses through direct consumption of inflorescences and seeds, but we know little about intraspecific variation in susceptibility to grazing of different seagrass tissues. We contrasted the relative palatability of reproductive and vegetative tissues of the temperate seagrass Posidonia oceanica in the field, and we assessed the feeding preferences among these tissues of the main consumers of the plant, the fish Sarpa salpa and the urchin Paracentrotus lividus. Moreover, we identified the plant traits that explained the observed feeding behaviour. We provide strong evidence for herbivore selectivity among seagrass tissues. In the field, 70–90% of inflorescences were damaged by herbivores compared to 3–60% of leaves of similar age. In feeding assays, the urchin P. lividus showed over a twofold preference for reproductive tissue at various stages of development. By contrast, we detected no feeding activity on either leaves or inflorescences from the fish S. salpa, which is known to migrate to deeper waters soon after flowering starts and during the period of fruit maturation. Despite being the preferred food of urchins, inflorescences were chemically defended, had higher levels of phenolics and lower nutrient and calorific content than leaves. We experimentally demonstrated that leaf structural defences are the primary factor in determining urchin feeding preferences. Removal of plant structure results in a drastic shift in urchin selectivity towards the most nutritious and less chemically defended leaf tissue, indicating that multiple mechanisms of defence to herbivory may coexist in seagrasses.  相似文献   

12.
Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure.  相似文献   

13.
In shallow marine environments the variability in grazing on seagrasses has been hypothesized to be controlled, in part, by the nutritive quality (i.e., nitrogen content) of their leaves. The few existing studies of the relationship between leaf nitrogen content and seagrass grazing have all found a positive relationship between leaf nitrogen content and preference by selective vertebrate grazers (i.e., the bucktooth parrotfish, green sea turtles, and dugongs). However, most marine herbivores (both vertebrate and invertebrate) are thought to be extreme generalists with broad diets of variable nutritive quality (e.g., detritus, living plants, and animals), suggesting the currently held view on the role leaf nutrient content in explaining the variability of seagrass grazing is an oversimplification.In this study, we evaluated how leaf nitrogen content influenced grazing on turtlegrass by a generalist invertebrate herbivore (the pink sea urchin Lytechinus variegatus) in the northeastern Gulf of Mexico. Using a short-term laboratory test and a longer-term field experiment, we tested the hypothesis that leaf nitrogen content controls sea-urchin grazing on seagrass leaves. We hypothesized that if poor nutritive value of seagrasses is responsible for reduced rates of feeding, then increasing leaf nitrogen concentrations should lead to increased rates of seagrass consumption by sea urchins.In the field experiment, we significantly enriched seagrass leaf nitrogen concentrations (some 10-20% depending on month) in experimental plots with a commercial fertilizer and we manipulated grazing intensity by enclosing adult sea urchins at densities that bracketed the range of average densities observed in the region (i.e., 0, 10 and 20 individuals/m(2)). Comparisons of changes in aboveground seagrass production and biomass showed no evidence that sea urchins grazed significantly more in treatments where leaf nitrogen was enriched. Because the statistical power of our test to detect such differences was low and aboveground seagrass production varied significantly among treatments, we also used a mass balance equation to estimate sea urchin consumption of nitrogen-enriched and unenriched leaves. This showed that sea urchins compensated for low nitrogen levels in our unenriched treatments by eating more leaves than in treatments where leaf nitrogen was elevated. Using a laboratory test, we also found that sea urchins ate less nitrogen-enriched seagrass than unenriched seagrass. In combination, these results show that, in contrast to findings reported for vertebrate herbivores, sea urchins feed at higher rates when offered seagrass leaves of lower leaf nitrogen content, and that low levels of leaf nitrogen are not always an effective defense against herbivores.  相似文献   

14.
Sea urchins are model non‐chordate deuterostomes, and studying the nervous system of their embryos can aid in the understanding of the universal mechanisms of neurogenesis. However, despite the long history of sea urchin embryology research, the molecular mechanisms of their neurogenesis have not been well investigated, in part because neurons appear relatively late during embryogenesis. In this study, we used the species Temnopleurus reevesii as a new sea urchin model and investigated the detail of its development and neurogenesis during early embryogenesis. We found that the embryos of T. reevesii were tolerant of high temperatures and could be cultured successfully at 15–30°C during early embryogenesis. At 30°C, the embryos developed rapidly enough that the neurons appeared at just after 24 h. This is faster than the development of other model urchins, such as Hemicentrotus pulcherrimus or Strongylocentrotus purpuratus. In addition, the body of the embryo was highly transparent, allowing the details of the neural network to be easily captured by ordinary epifluorescent and confocal microscopy without any additional treatments. Because of its rapid development and high transparency during embryogenesis, T. reevesii may be a suitable sea urchin model for studying neurogenesis. Moreover, the males and females are easily distinguishable, and the style of early cleavages is intriguingly unusual, suggesting that this sea urchin might be a good candidate for addressing not only neurology but also cell and developmental biology.  相似文献   

15.
White sea urchins (Lytechinus anamesus Clark) attacked purple (Strongylocentrotus purpuratus Stimpson) and red (S. franciscanus Agassiz) sea urchins at Anacapa Island, California. Densities of white urchins were highest in the deep algal crust-dominated community where up to 6% of purple and 25% of red urchins were being attacked by white urchins. Up to 9% of Lytechinus anamesus in an area were actively eating stronglylocentrotids and usually, more than one white urchin was involved in the attack. In areas with low densities of white urchins, no strongylocentrotids were being attacked.After 36 h in the laboratory, there was no difference in the number of white urchins attacking injured or healthy purple urchins in each of the three experimental densities of white urchins. However, both injured and healthy urchins were attacked by more white urchins in high density. When given a choice between injured purple urchins or fresh kelp, white urchins overwhelmingly chose kelp. Data suggest that white urchins utilize other urchin species as an alternative source of food when more preferred food is absent, but will switch to preferred food should it become available.  相似文献   

16.
Sea urchins have been used as experimental organisms for developmental biology for over a century. Yet, as is the case for many other marine invertebrates, understanding the development of the juveniles and adults has lagged far behind that of their embryos and larvae. The reasons for this are, in large part, due to the difficulty of experimentally manipulating juvenile development. Here we develop and validate a technique for injecting compounds into juvenile rudiments of the purple sea urchin, Strongylocentrotus purpuratus. We first document the distribution of rhodaminated dextran injected into different compartments of the juvenile rudiment of sea urchin larvae. Then, to test the potential of this technique to manipulate development, we injected Vivo-Morpholinos (vMOs) designed to knock down p58b and p16, two proteins involved in the elongation of S. purpuratus larval skeleton. Rudiments injected with these vMOs showed a delay in the growth of some juvenile skeletal elements relative to controls. These data provide the first evidence that vMOs, which are designed to cross cell membranes, can be used to transiently manipulate gene function in later developmental stages in sea urchins. We therefore propose that injection of vMOs into juvenile rudiments, as shown here, is a viable approach to testing hypotheses about gene function during development, including metamorphosis.  相似文献   

17.
Various stresses, including exposure to cold or heat, can result in a sharp increase in pigmentation of sea urchin embryos and larvae. The differentiation of pigment cells is accompanied by active expression of genes involved in the biosynthesis of naphthoquinone pigments and appears to be a part of the defense system protecting sea urchins against harmful factors. To clarify numerous issues occurring at various time points after the cold injury, we studied the effect of shikimic acid, a precursor of naphthoquinone pigments, on cell viability and expression of some pigment genes such as the pks and sult before and after freezing the cultures of sea urchin embryo cells. The maximum level of the pks gene expression after a freezing–thawing cycle was found when sea urchin cells were frozen in the presence of trehalose alone. Despite naphthoquinone pigments have been reported to possess antioxidant and cryoprotectant properties, our data suggest that shikimic acid does not have any additional cryoprotective effect on freezing tolerance of sea urchin embryo pigment cells.  相似文献   

18.
The ability to survive under extreme environmental conditions was studied in the adults of the heart sea urchin Echinocardium cordatum (Pennant). At seawater temperatures of 13.3 to 14.8°C and salinity of 33.2–33.4‰, being devoid of the possibility to burrow into the sand or eat, some sea urchins died on day 5 and all individuals had perished by the end of day 8. At a temperature of 19°C, the salinity tolerance range of adults was limited to 33–28‰. Only 30 to 20% of sea urchins transferred to a solid substrate survived for 7 days at a salinity of 33 to 24‰, but all of them perished toward the end of day 8.  相似文献   

19.
施栋涛  赵冲  尹东红  陈阳  常亚青 《生态学报》2022,42(10):4160-4168
海胆在海藻床生态系统结构和功能调控中发挥重要作用。深入理解流速对海胆摄食和生长的影响具有重要的生态学研究价值。研究了长时间(49 d)不同流速(2 cm/s, 10 cm/s和20 cm/s)对光棘球海胆幼胆(Mesocentrotus nudus,壳径:约20 mm)摄食行为、摄食量和生长的影响,以评估不同流速下,海胆摄食行为和生长的差异。实验结果表明,流速对光棘球海胆的存活无显著影响,但显著影响其生长。2 cm/s下海胆的壳径和体重显著大于10和20 cm/s。在实验开始后的第2周和第3周,2 cm/s下海胆的体重和壳径已显著高于20 cm/s。流速显著影响光棘球海胆的摄食量(P<0.001)和觅食行为(20 cm/s,P=0.004),但口器咬合行为未受显著影响(P=0.113)。管足附着时间在流速为10 cm/s和20 cm/s下显著长于其在2 cm/s。同样的,相较于2 cm/s(P=0.02)和10 cm/s(P=0.03),20 cm/s的流速可显著削弱光棘球海胆的翻正行为。综上,高流速(20 cm/s)通过影响海胆管足活动削弱其觅食行为(而非摄食行为),进而降低其...  相似文献   

20.
In eastern Canada, the destruction of kelp beds by dense aggregations (fronts) of the omnivorous green sea urchin, Strongylocentrotus droebachiensis, is a key determinant of the structure and dynamics of shallow reef communities. Recent studies suggest that hydrodynamic forces, but not sea temperature, determine the strength of urchin-kelp interactions, which deviates from the tenets of the metabolic theory of ecology (MTE). We tested the hypothesis that water temperature can predict short-term kelp bed destruction by S. droebachiensis in calm hydrodynamic environments. Specifically, we experimentally determined relationships among water temperature, body size, and individual feeding in the absence of waves, as well as among wave velocity, season, and aggregative feeding. We quantified variation in kelp-bed boundary dynamics, sea temperature, and wave height over three months at one subtidal site in Newfoundland to test the validity of thermal tipping ranges and regression equations derived from laboratory results. Consistent with the MTE, individual feeding during early summer (June-July) obeyed a non-linear, size- and temperature-dependent relationship: feeding in large urchins was consistently highest and positively correlated with temperature <12°C and dropped within and above the 12–15°C tipping range. This relationship was more apparent in large than small urchins. Observed and expected rates of kelp loss based on sea temperature and urchin density and size structure at the front were highly correlated and differed by one order of magnitude. The present study speaks to the importance of considering body size and natural variation in sea temperature in studies of urchin-kelp interactions. It provides the first compelling evidence that sea temperature, and not only hydrodynamic forces, can predict kelp bed destruction by urchin fronts in shallow reef communities. Studying urchin-seaweed-predator interactions within the conceptual foundations of the MTE holds high potential for improving capacity to predict and manage shifts in marine food web structure and productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号