首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skeletal muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction (MTJ). In vertebrates, a great deal is known about muscle specification as well as how somitic cells, as a cohort, generate the early myotome. However, the cellular mechanisms that generate long muscle fibers from short cells and the molecular factors that limit elongation are unknown. We show that zebrafish fast muscle fiber morphogenesis consists of three discrete phases: short precursor cells, intercalation/elongation, and boundary capture/myotube formation. In the first phase, cells exhibit randomly directed protrusive activity. The second phase, intercalation/elongation, proceeds via a two-step process: protrusion extension and filling. This repetition of protrusion extension and filling continues until both the anterior and posterior ends of the muscle fiber reach the MTJ. Finally, both ends of the muscle fiber anchor to the MTJ (boundary capture) and undergo further morphogenetic changes as they adopt the stereotypical, cylindrical shape of myotubes. We find that the basement membrane protein laminin is required for efficient elongation, proper fiber orientation, and boundary capture. These early muscle defects in the absence of either lamininβ1 or lamininγ1 contrast with later dystrophic phenotypes in lamininα2 mutant embryos, indicating discrete roles for different laminin chains during early muscle development. Surprisingly, genetic mosaic analysis suggests that boundary capture is a cell-autonomous phenomenon. Taken together, our results define three phases of muscle fiber morphogenesis and show that the critical second phase of elongation proceeds by a repetitive process of protrusion extension and protrusion filling. Furthermore, we show that laminin is a novel and critical molecular cue mediating fiber orientation and limiting muscle cell length.  相似文献   

2.
3.
Promptly after the notochord domain is specified in the vertebrate dorsal mesoderm, it undergoes dramatic morphogenesis. Beginning during gastrulation, convergence and extension movements change a squat cellular array into a narrow, elongated one that defines the primary axis of the embryo. Convergence and extension might be coupled by a highly organized cellular intermixing known as mediolateral intercalation behavior (MIB). To learn whether MIB drives early morphogenesis of the zebrafish notochord, we made 4D recordings and quantitatively analyzed both local cellular interactions and global changes in the shape of the dorsal mesodermal field. We show that MIB appears to mediate convergence and can account for extension throughout the dorsal mesoderm. Comparing the notochord and adjacent somitic mesoderm reveals that extension can be regulated separately from convergence. Moreover, mutational analysis shows that extension does not require convergence. Hence, a cellular machine separate from MIB that can drive dorsal mesodermal extension exists in the zebrafish gastrula. The likely redundant control of morphogenesis may provide for plasticity at this critical stage of early development.  相似文献   

4.
《Biophysical journal》2021,120(19):4214-4229
Distinct patterns of actomyosin contractility are often associated with particular epithelial tissue shape changes during development. For example, a planar-polarized pattern of myosin II localization regulated by Rho1 signaling during Drosophila body axis elongation is thought to drive cell behaviors that contribute to convergent extension. However, it is not well understood how specific aspects of a myosin pattern influence the multiple cell behaviors, including cell intercalation, cell shape changes, and apical cell area fluctuations, that simultaneously occur during morphogenesis. Here, we developed two optogenetic tools, optoGEF and optoGAP, to activate or deactivate Rho1 signaling, respectively. We used these tools to manipulate myosin patterns at the apical side of the germband epithelium during Drosophila axis elongation and analyzed the effects on contractile cell behaviors. We show that uniform activation or inactivation of Rho1 signaling across the apical surface of the germband is sufficient to disrupt the planar-polarized pattern of myosin at cell junctions on the timescale of 3–5 min, leading to distinct changes in junctional and medial myosin patterns in optoGEF and optoGAP embryos. These two perturbations to Rho1 activity both disrupt axis elongation and cell intercalation but have distinct effects on cell area fluctuations and cell packings that are linked with changes in the medial and junctional myosin pools. These studies demonstrate that acute optogenetic perturbations to Rho1 activity are sufficient to rapidly override the endogenous planar-polarized myosin pattern in the germband during axis elongation. Moreover, our results reveal that the levels of Rho1 activity and the balance between medial and junctional myosin play key roles not only in organizing the cell rearrangements that are known to directly contribute to axis elongation but also in regulating cell area fluctuations and cell packings, which have been proposed to be important factors influencing the mechanics of tissue deformation and flow.  相似文献   

5.
6.
Oriented cell divisions in the extending germband of Drosophila   总被引:1,自引:0,他引:1  
Tissue elongation is a general feature of morphogenesis. One example is the extension of the germband, which occurs during early embryogenesis in Drosophila. In the anterior part of the embryo, elongation follows from a process of cell intercalation. In this study, we follow cell behaviour at the posterior of the extending germband. We find that, in this region, cell divisions are mostly oriented longitudinally during the fast phase of elongation. Inhibiting cell divisions prevents longitudinal deformation of the posterior region and leads to an overall reduction in the rate and extent of elongation. Thus, as in zebrafish embryos, cell intercalation and oriented cell division together contribute to tissue elongation. We also show that the proportion of longitudinal divisions is reduced when segmental patterning is compromised, as, for example, in even skipped (eve) mutants. Because polarised cell intercalation at the anterior germband also requires segmental patterning, a common polarising cue might be used for both processes. Even though, in fish embryos, both mechanisms require the classical planar cell polarity (PCP) pathway, germband extension and oriented cell divisions proceed normally in embryos lacking dishevelled (dsh), a key component of the PCP pathway. An alternative means of planar polarisation must therefore be at work in the embryonic epidermis.  相似文献   

7.
How genetic programs generate cell-intrinsic forces to shape embryos is actively studied, but less so how tissue-scale physical forces impact morphogenesis. Here we address the role of the latter during axis extension, using Drosophila germband extension (GBE) as a model. We found previously that cells elongate in the anteroposterior (AP) axis in the extending germband, suggesting that an extrinsic tensile force contributed to body axis extension. Here we further characterized the AP cell elongation patterns during GBE, by tracking cells and quantifying their apical cell deformation over time. AP cell elongation forms a gradient culminating at the posterior of the embryo, consistent with an AP-oriented tensile force propagating from there. To identify the morphogenetic movements that could be the source of this extrinsic force, we mapped gastrulation movements temporally using light sheet microscopy to image whole Drosophila embryos. We found that both mesoderm and endoderm invaginations are synchronous with the onset of GBE. The AP cell elongation gradient remains when mesoderm invagination is blocked but is abolished in the absence of endoderm invagination. This suggested that endoderm invagination is the source of the tensile force. We next looked for evidence of this force in a simplified system without polarized cell intercalation, in acellular embryos. Using Particle Image Velocimetry, we identify posteriorwards Myosin II flows towards the presumptive posterior endoderm, which still undergoes apical constriction in acellular embryos as in wildtype. We probed this posterior region using laser ablation and showed that tension is increased in the AP orientation, compared to dorsoventral orientation or to either orientations more anteriorly in the embryo. We propose that apical constriction leading to endoderm invagination is the source of the extrinsic force contributing to germband extension. This highlights the importance of physical interactions between tissues during morphogenesis.  相似文献   

8.
The mammalian pancreas is a highly branched gland, essential for both digestion and glucose homeostasis. Pancreatic branching, however, is poorly understood, both at the ultrastructural and cellular levels. In this article, we characterize the morphogenesis of pancreatic branches, from gross anatomy to the dynamics of their epithelial organization. We identify trends in pancreatic branch morphology and introduce a novel mechanism for branch formation, which involves transient epithelial stratification and partial loss of cell polarity, changes in cell shape and cell rearrangements, de novo tubulogenesis and epithelial tubule remodeling. In contrast to the classical epithelial budding and tube extension observed in other organs, a pancreatic branch takes shape as a multi-lumen tubular plexus coordinately extends and remodels into a ramifying, single-lumen ductal system. Moreover, our studies identify a role for EphB signaling in epithelial remodeling during pancreatic branching. Overall, these results illustrate distinct, step-wise cellular mechanisms by which pancreatic epithelium shapes itself to create a functional branching organ.  相似文献   

9.
10.
Organogenesis requires coordinated regulation of cellular differentiation and morphogenesis. Cartilage cells in the vertebrate skeleton form polarized stacks, which drive the elongation and shaping of skeletal primordia. Here we show that an atypical cadherin, Fat3, and its partner Dachsous-2 (Dchs2), control polarized cell-cell intercalation of cartilage precursors during craniofacial development. In zebrafish embryos deficient in Fat3 or Dchs2, chondrocytes fail to stack and misregulate expression of sox9a. Similar morphogenetic defects occur in rerea/atr2a −/− mutants, and Fat3 binds REREa, consistent with a model in which Fat3, Dchs2 and REREa interact to control polarized cell-cell intercalation and simultaneously control differentiation through Sox9. Chimaeric analyses support such a model, and reveal long-range influences of all three factors, consistent with the activation of a secondary signal that regulates polarized cell-cell intercalation. This coordinates the spatial and temporal morphogenesis of chondrocytes to shape skeletal primordia and defects in these processes underlie human skeletal malformations. Similar links between cell polarity and differentiation mechanisms are also likely to control organ formation in other contexts.  相似文献   

11.
The pattern of mediolateral cell intercalation in mesodermal tissues during gastrulation and neurulation of Xenopus laevis was determined by tracing cells labeled with fluorescein dextran amine (FDA). Patches of the involuting marginal zone (IMZ) of early gastrula stage embryos, labeled by injection of FDA at the one-cell stage, were grafted to the corresponding regions of unlabeled host embryos. The host embryos were fixed at several stages, serially sectioned, and examined with fluorescence microscopy and three-dimensional reconstruction. Patterns of mixing of labeled and unlabeled cells show that mediolateral cell intercalation occurs in the posterior, dorsal mesoderm as this region undergoes convergent extension and differentiates into somites and notochord. In contrast, it does not occur in any dorsoventral sector of the anterior, leading edge of the mesodermal mantle. These results, taken with other evidence, suggest that the mesoderm of Xenopus consists of two subpopulations, each with a characteristic morphogenetic movement, cell behavior, and tissue fate. The migrating mesoderm (1) does not show convergent extension; (2) migrates and spreads on the blastocoel roof; (3) is dependent on this substratum for its morphogenesis; (4) shows little mediolateral intercalation; (5) consists of the anterior, early-involuting region of the mesodermal mantle; and (6) differentiates into head, heart, blood island, and lateral body wall mesoderm. The extending mesoderm (1) shows convergent extension; (2) is independent of the blastocoel roof in its morphogenesis; (3) shows extensive mediolateral intercalation; (4) consists of the posterior, late-involuting parts of the mesodermal mantle; and (5) differentiates into somite and notochord.  相似文献   

12.
Background and Aims Floral spurs are hollow, tubular outgrowths that typically conceal nectar. By their involvement in specialized pollinator interactions, spurs have ecological and evolutionary significance, often leading to speciation. Despite their importance and diversity in shape and size among angiosperm taxa, detailed investigations of the mechanism of spur development have been conducted only recently.Methods Initiation and growth of the nectar-yielding petal spur of Centranthus ruber ‘Snowcloud’ was investigated throughout seven stages, based on bud size and developmental events. The determination of the frequency of cell division, quantified for the first time in spurs, was conducted by confocal microscopy following 4'',6-diamidino-2-phenylindole (DAPI) staining of mitotic figures. Moreover, using scanning electron microscospy of the outer petal spur surface unobstructed by trichomes, morphometry of epidermal cells was determined throughout development in order to understand the ontogeny of this elongate, hollow tube.Key Results Spur growth from the corolla base initially included diffuse cell divisions identified among epidermal cells as the spur progressed through its early stages. However, cell divisions clearly diminished before a petal spur attained 30 % of its final length of 4·5 mm. Thereafter until anthesis, elongation of individual cells was primarily responsible for the spur’s own extension. Consequently, a prolonged period of anisotropy, wherein epidermal cells elongated almost uniformly in all regions along the petal spur’s longitudinal axis, contributed principally to the spur’s mature length.Conclusions This research demonstrates that anisotropic growth of epidermal cells – in the same orientation as spur elongation – chiefly explains petal spur extension in C. ruber. Representing the inaugural investigation of the cellular basis for spur ontogeny within the Euasterids II clade, this study complements the patterns in Aquilegia species (order Ranunculales, Eudicots) and Linaria vulgaris (order Lamiales, Euasterids I), thereby suggesting the existence of a common underlying mechanism for petal spur ontogeny in disparate dicot lineages.  相似文献   

13.
Sandwich explants of the suprablastoporal area of Xenopus early-mid gastrula and same stages of entire embryos were stretched with two needles perpendicular to the direction of natural elongation of the axial rudiments. The changes in the embryonic shape and histological structure were monitored as well as the arrangement of descendants of one of dorsal blastomers labeled with fluorescein-dextran at the 16-cell stage. A substantial fraction of stretched explants reoriented along the applied stretch direction. The arrangement dynamics of fluorescein-dextran-labeled cells and explant shape demonstrate that this is an active response based on convergent intercalation of cells induced by stretching. Stretched gastrulae demonstrated arrested gastrulation, dorsoventral extension of the blastopore, and ventral flow of labeled cells towards the lateral lips of the blastopore, which was also mediated by convergent intercalation and tensotaxis. The obtained data are discussed in terms of the hypothesis of mechanical stress hyper-restoration.  相似文献   

14.
Epithelial morphogenesis is characterized by an exquisite control of cell shape and position. Progression through dorsal closure in Drosophila gastrulation depends on the ability of Rap1 GTPase to signal through the adherens junctional multidomain protein Canoe. Here, we provide genetic evidence that epithelial Rap activation and Canoe effector usage are conferred by the Drosophila PDZ-GEF (dPDZ-GEF) exchange factor. We demonstrate that dPDZ-GEF/Rap/Canoe signaling modulates cell shape and apicolateral cell constriction in embryonic and wing disc epithelia. In dPDZ-GEF mutant embryos with strong dorsal closure defects, cells in the lateral ectoderm fail to properly elongate. Postembryonic dPDZ-GEF mutant cells generated in mosaic tissue display a striking extension of lateral cell perimeters in the proximity of junctional complexes, suggesting a loss of normal cell contractility. Furthermore, our data indicate that dPDZ-GEF signaling is linked to myosin II function. Both dPDZ-GEF and cno show strong genetic interactions with the myosin II-encoding gene, and myosin II distribution is severely perturbed in epithelia of both mutants. These findings provide the first insight into the molecular machinery targeted by Rap signaling to modulate epithelial plasticity. We propose that dPDZ-GEF-dependent signaling functions as a rheostat linking Rap activity to the regulation of cell shape in epithelial morphogenesis at different developmental stages.  相似文献   

15.
Connection of epithelial tubes to generate a common network is a key step in the formation of tubular organs such as the tracheal respiratory and the vascular systems. However, it is not clear how these connecting tubes arise. Here we address this issue by studying the dorsal fusion branches in the Drosophila trachea, taking into account the morphology and contribution of each cell type on the basis of their individual labeling. Our results explain how a fusion branch forms and also illustrate the different nature of the two seamless tubes in the Drosophila trachea, generated by fusion and terminal cells respectively.  相似文献   

16.
Kinesin is a force-generating molecule that is thought to translocate organelles along microtubules, but its precise cellular function is still unclear. To determine the role of kinesin in vivo, we have generated a kinesin-deficient strain in the simple cell system Neurospora crassa. Null cells exhibit severe alterations in cell morphogenesis, notably hyphal extension, morphology and branching. Surprisingly, the movement of organelles visualized by video microscopy is hardly affected, but apical hyphae fail to establish a Spitzenkörper, an assemblage of secretory vesicles intimately linked to cell elongation and morphogenesis in Neurospora and other filamentous fungi. As cell morphogenesis depends on polarized secretion, our findings demonstrate that a step in the secretory pathway leading to cell shape determination and cell elongation cannot tolerate a loss of kinesin function. The defect is suggested to affect the transport of small, secretory vesicles to the site involved in protrusive activity, resulting in the uncoordinated insertion of new cell wall material over much of the cell surface. These observations have implications for the presumptive function of kinesin in more complex cell systems.  相似文献   

17.
Tissue morphogenesis requires control over cell shape changes and rearrangements. In the Drosophila mesoderm, linked epithelial cells apically constrict, without cell extrusion or intercalation, to fold the epithelium into a tube that will then undergo epithelial-to-mesenchymal transition (EMT). Apical constriction drives tissue folding or cell extrusion in different contexts, but the mechanisms that dictate the specific outcomes are poorly understood. Using live imaging, we found that Abelson (Abl) tyrosine kinase depletion causes apically constricting cells to undergo aberrant basal cell extrusion and cell intercalation. abl depletion disrupted apical–basal polarity and adherens junction organization in mesoderm cells, suggesting that extruding cells undergo premature EMT. The polarity loss was associated with abnormal basolateral contractile actomyosin and Enabled (Ena) accumulation. Depletion of the Abl effector Enabled (Ena) in abl-depleted embryos suppressed the abl phenotype, consistent with cell extrusion resulting from misregulated ena. Our work provides new insight into how Abl loss and Ena misregulation promote cell extrusion and EMT.  相似文献   

18.
The tubular network of the tracheal system in the Drosophila embryo is created from a set of epithelial placodes by cell migration, rearrangements, fusions and shape changes. A designated number of cells is initially allocated to each branch of the system. We show here that the final cell number in the dorsal branches is not only determined by early patterning events and subsequent cell rearrangements but also by elimination of cells from the developing branch. Extruded cells die and are engulfed by macrophages. Our results suggest that the pattern of cell extrusion and death is not hard-wired, but is determined by environmental cues.  相似文献   

19.
Understanding the mechanisms underlying the establishment of different bacterial cell shapes and the advantage that a particular shape imparts is one of the most fascinating and challenging areas of study in microbiology. One remarkable example of bacterial morphogenesis is the elaboration of long, tubular extensions of the cell envelope of certain aquatic bacteria. These appendages (also called prosthecae or stalks) possess features that make them particularly amenable models for experiments designed to uncover general principles of cell morphogenesis and of cell shape function. Recent evidence supports the hypothesis that stalk synthesis in Caulobacter crescentus is a specialized form of cell elongation that confers to the cell substantial advantages in nutrient uptake. Further insights into the mechanisms and function of stalk synthesis will require a multidisciplinary systems biology approach using principles and methodologies from ecology and evolutionary biology to biophysics and mathematical modelling.  相似文献   

20.
Multicellular organisms are generated by coordinated cell movements during morphogenesis. Convergent extension is a key tissue movement that organizes mesoderm, ectoderm, and endoderm in vertebrate embryos. The goals of researchers studying convergent extension, and morphogenesis in general, include understanding the molecular pathways that control cell identity, establish fields of cell types, and regulate cell behaviors. Cell identity, the size and boundaries of tissues, and the behaviors exhibited by those cells shape the developing embryo; however, there is a fundamental gap between understanding the molecular pathways that control processes within single cells and understanding how cells work together to assemble multicellular structures. Theoretical and experimental biomechanics of embryonic tissues are increasingly being used to bridge that gap. The efforts to map molecular pathways and the mechanical processes underlying morphogenesis are crucial to understanding: (1) the source of birth defects, (2) the formation of tumors and progression of cancer, and (3) basic principles of tissue engineering. In this paper, we first review the process of tissue convergent extension of the vertebrate axis and then review models used to study the self-organizing movements from a mechanical perspective. We conclude by presenting a relatively simple “wedge-model” that exhibits key emergent properties of convergent extension such as the coupling between tissue stiffness, cell intercalation forces, and tissue elongation forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号