首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Phosphorus loading plays an important role in the occurrence of cyanobacterial blooms and understanding how this nutrient affects the physiology of cyanobacteria is imperative to manage these phenomena. Microcystis aeruginosa and Raphidiopsis raciborskii are cyanobacterial species that form potentially toxic blooms in freshwater ecosystems worldwide. Blooms comprise numerous strains with high trait variability, which can contribute to the widespread distribution of these species. Here, we explored the intraspecific variability in response to phosphorus depleted conditions (P-) testing five strains of each species. Strains could be differentiated by cell volume or genetic profiles except for those of the same species, sampling location and date, though these presented differences in their response to (P-). Although differently affected by (P-) over 10 days, all strains were able to grow and maintain photosynthetic activity. For most M. aeruginosa and R. raciborskii strains growth rates were not significantly different comparing (P+) and (P-) conditions. After ten days in (P-), only one M. aeruginosa strain and two R. raciborskii strains showed reduction in biovolume yield as compared to (P+) but in most strains chlorophyll-a concentrations were lower in (P-) than in (P+). Reduced photosystem II efficiency was found for only one R. raciborskii strain while all M. aeruginosa strains were affected. Only two M. aeruginosa and one R. raciborskii strain increased alkaline phosphatase activity under (P-) as compared to (P+). Variation in P-uptake was also observed but comparison among strains yielded homogeneous groups comprised of representatives of both species. Comparing the response of each species as a whole, the (P-) condition affected growth rate, biovolume yield and chlorophyll yield. However, these parameters revealed variation among strains of the same species to the extent that differences between M. aeruginosa and R. raciborskii were not significant. Taken together, these results do not support the idea that R. raciborskii, as a species, can withstand phosphorus limitation better than M. aeruginosa and also point that the level of intraspecific variation may preclude generalizations based on studies that use only one or few strains.  相似文献   

2.
Xia Z Y  Zhou Y Y  Chen F  Song C L  Li J Q 《农业工程》2012,32(3):138-143
Phosphorus loadings in sediments play an important role in lake eutrophication and the progress of its recovery. The phosphorus release is controlled by physical, chemical and biological mechanisms. Alkaline phosphatase catalyzes remineralization of organic phosphorus and then it may be an important factor accelerating phosphorus cycling in sediments. In this paper, distributions, properties and function of alkaline phosphatase with depths in sediments of two urban lakes were discussed. Alkaline phosphatase activity (APA) in the sediments of Lake Yuehu decreased with the sediment depth. APA in sediments of Lake Yuehu was, mostly, inhibited by Phe and L-Cys; and inhibiting ability of Phe could be stronger than L-Cys. APA in deeper layer (20–30 cm) of sediments was more sensitive to the inhibitors than other layers, but range of variation in APA was most wide in the subsurface layer (10–20 cm). All the facts implied that alkaline phosphatase occurred in various forms (isoenzymes). APA in the sediments with different depths of Lake Donghu responded Phe differently. Reacted with Phe and incubated for 1 day, the amounts of SRP released by these sediments varied correspondingly. SRP on the overlying water in deeper layers (5–10 cm and 15–20 cm) of Site T1 was higher than that in surface layer (0–5 cm) of the same site, 1 day after incubation. Hence, the SRP release resulted, at least partially, from the hydrolysis of some liable organic phosphorus mediated by APA. Alkaline phosphatase in lake sediments plays an important role in the release of internal phosphorus loadings and eutrophication. A possible explanation for the sensitivity at deeper layers could be another active region of hydrolysis by alkaline phosphatase from organic phosphorus, which added a new dimension in phosphorus cycling mediated by some biochemical mechanisms.  相似文献   

3.
4.
5.
We have amplified and cloned DNA sequences derived from a gene encoding a SNF1 (sucrose-non-fermenting 1)-related protein kinase which differs from that previously reported from barley. Northern blot and polymerase chain reaction (PCR) analysis of RNA populations, using specific probes and oligonucleotide primers, indicated that the two SNF1-related genes are differentially regulated. One is expressed in all tissues, whereas the other is expressed at high levels in the seed endosperm and aleurone, but at levels undetectable by northern blot analysis in other tissues. Comparisons with other plant SNF1-related protein kinase genes suggest that the form which is expressed at greatly enhanced levels in the seed is less similar to the other plant homologues which have been reported and may be unique to cereals.  相似文献   

6.
Toxic, benthic cyanobacterial proliferations have increased in frequency and severity globally and can have negative impacts on aquatic ecosystems, recreation and human health. Microcoleus autumnalis has been associated with numerous animal fatalities and is causing increasing concern. It tends to grow in systems with moderate dissolved inorganic nitrogen and very low dissolved reactive phosphorus. Acquisition of nutrients, particularly phosphorus, from organic sources may explain how M. autumnalis can reach the high biomass in these relatively nutrient deplete environments. In the present study the effect of phosphorus concentration and source on alkaline phosphatase activity was investigated in toxic and non-toxic M. autumnalis strains. Toxic strains exhibited significantly higher alkaline phosphatase activity than non-toxic strains (p < 0.05), and alkaline phosphatase activity increased in all strains under phosphorus-depleted conditions (p < 0.05). Alkaline phosphatase activity was also present in environmental M. autumnalis mats, though at lower levels than in laboratory experiments. The presence of alkaline phosphatase activity indicates that the acquisition of phosphorus from organic phosphorus sources may contribute to the ability of M. autumnalis to grow in systems with low dissolved reactive phosphorus.  相似文献   

7.
We have screened a pea genomic library using a cDNA probe derived from pea shoot RNA. From this screen, we isolated two closely related genes, designated as S2 and P4. An intriguing property of these two genes is the presence in their coding region of a repeated sequence that is conserved between them in sequence but not in the number of the repeating units. The predicted amino acid sequence suggests that these proteins could be exported and glycosylated. 3 S1 analysis reveals that one of the genes, S2, is expressed highly in stem, as expected from previous work. However, mRNA derived from the other gene, P4, is not detectable in stem tissue, but is present in tissue derived from pea pods. The 5 upstream sequence of S2 and P4 are 94% identical up to position -121, suggesting that sequences upstream of -121 are responsible for organ-specific expression of the two genes.  相似文献   

8.
Two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B were shown to have different temperature tolerance and seasonal dynamics. To determine whether this variation in thermal tolerance is related to different expression patterns of heat shock protein (hsp) genes during temperature stress, we obtained complete cDNA sequences for hsp90, hsp70 and hsp20, and analysed their expression profiles across temperature gradients by real‐time quantitative polymerase chain reaction (PCR). Six full‐length cDNAs were cloned and sequenced from these two species. The full‐length cDNAs of hsp90s contain 2166 and 2157 bp open‐reading frames (ORF) which encode proteins with calculated molecular weights of 83 013 and 82 857 Da in T. vaporariorum and B. tabaci, respectively. The 1947 and 1959 bp ORFs of whitefly hsp70s comprise 649 and 653 amino acids with the calculated masses of 70 885 and 71 008 Da in T. vaporariorum and B. tabaci, respectively. Both complete cDNAs of hsp20 of T. vaporariorum and B. tabaci contain 585 bp ORFs and deduced amino acid sequences had molecular weights of 21 559 and 21 539 Da, respectively. The hsp expression profile results showed that temperatures for onset (Ton) or maximal (Tmax) induction of hsp expression in T. vaporariorum were generally 2–6°C lower than those in B. tabaci. These results suggest that the Ton (or Tmax) of hsps can represent the differences in temperature tolerance of these two whitefly species, and may be used to determine their natural geographical distribution and natural population seasonal dynamics. Significant upregulation of most hsps were observed when temperature stress was lifted, except that hsp70 and hsp20 of B. tabaci did not respond to the cold stress, indicating that response to heat and cold stress may have a different genetic and physiological basis in two whitefly species. These results highlight the importance of understanding the complexity of the heat shock response across multiple isoforms while attempting to link them to whole‐organism traits such as thermal tolerance.  相似文献   

9.
10.
Phosphorus (P) is one of the most essential macronutrients required for plant growth. Although it is abundant in soil, P is often the limiting nutrient for crop yield potential because of the low concentration of soluble P that plants can absorb directly. The gene expression profile was investigated in rice roots at 6, 24 and 72 h under low P stress and compared with a control (normal P) profile, using a DNA chip of 60000 oligos (70 mer) that represented all putative genes of the rice genome. A total of 795 differentially expressed genes were identified in response to phosphate (Pi) starvation in at least one of the treatments. Based on the analysis, we found that: (i) The genes coding for the Pi transporter, acid phosphatase and RNase were up-regulated in rice roots; (ii) the genes involved in glycolysis were first up-regulated and then down-regulated; (iii) several genes involved in N metabolism and lipid metabolism changed their expression patterns; (iv) some genes involved in cell senescence and DNA or protein degradation were up-regulated; and (v) some transmembrane transporter genes were up-regulated. The results may provide useful information in the molecular process associated with Pi deficiency and thus facilitate research in improving Pi utilization in crop species.  相似文献   

11.
12.
以三角褐指藻(Phaeodactylum tricornutum)为研究材料,设置了5个磷营养限制处理:磷营养分量分别设为f/2培养基的1/20(P1)、1/10(P2)、1/8(P3)、1/4(P4)、1/2(P5),以f/2为对照(Pck),在磷限制胁迫下培养10d,然后均以相同密度(2.5×105cells·mL-1)接种在f/2条件下恢复培养16d,测定了三角褐指藻在磷限制胁迫下和恢复培养阶段的生长状况。结果表明,三角褐指藻在受到磷限制胁迫后,细胞密度、蛋白质和可溶性糖含量都显著低于对照(p<0.05);恢复阶段,P1、P2和P3处理组的细胞密度、平均相对生长率及生物量在恢复培养的中前期显著高于对照(p<0.05),最高平均相对生长率分别为0.73、0.70、0.68d-1,显著高于对照(0.55d-1)(p<0.05);P4处理组的细胞密度和生物量与对照无显著差异;P5处理组的细胞密度和生物量在恢复培养的中前期显著低于对照(p<0.05);随着培养时间的推移,各处理组与对照之间的差异逐渐缩小,处理组和对照的细胞密度、生物量、蛋白质和可溶性糖含量等均无显著差异。  相似文献   

13.
Non-transformed, rat intestinal epithelial cells (IEC-6), and human intestinal colonic carcinoma cells (CACO-2) have both been used to study processes of epithelial cell differentiation. However, only CACO-2 cells have been described as spontaneously expressing phenotypic changes of differentiation in culture. We report here that when IEC-6 cells are grown in post-confluent culture, they develop structural changes similar to those seen in cells induced to differentiate by culture on Englebreth-Holm-Swarm (EHS) extracellular matrix proteins. Correlated with this morphological change is loss of nuclear localization of c-myc protein and development of cell surface alkaline phosphatase (ALP) enzymatic activity. Messenger RNAs for liver and intestinal isoforms of ALP were expressed in both pre- and post-confluent cells. Inhibition of ALP activity in post-confluent cells by levamisole indicated the expressed ALP activity to be of the liver isoform. We suggest the expression of ALP activity, which occurs concomitantly with morphological alterations in post-confluent IEC-6 cells, represents increased expression and localization to the cell surface of the liver isoform of ALP. Cultured IEC-6 cells may provide a non-transformed, in vitro alternative to CACO-2 cells for study of epithelial cell differentiation.  相似文献   

14.
Two different calmodulin (CaM) cDNAs (MBCaM-1 and MBCaM-2) were isolated from a vigna radiata gt 11 library by screening with a heterologous Arabidopsis cDNA probe (TCH-1). Both cDNAs are 85% homologous inside the coding region but are highly divergent outside this region. The polypeptides encoded by MBCaM-1 and MBCaM-2 are identical except for two conservative substitutions at positions 7 and 10. Southern analysis revealed that both cDNAs are encoded by different genes. Expression studies revealed different patterns of expression of both genes. MBCaM-1 mRNA exhibited a dramatic transient increase in response to touch, while MBCaM-2 expression showed a steady but small increase as compared to MBCaM-1. When plants were grown in complete darkness MBCaM-1 was undetectable and MBCaM-2 exhibited very low levels of expression. One hour after exposure of etiolated seedlings to light MBCaM-1 showed no change, while MBCaM-2 expression was increased. After a 6 h exposure to light there was an induction of both MBCaM-1 and MBCaM-2; however, the magnitude of this increase was much greater for MBCaM-2. When plants were grown under a 16 h light/8 h dark cycle the mRNA levels for MBCaM-1 were lower during the light period and increased during the beginning of the night cycle, while MBCaM-2 showed no change. Plants treated with indole-3-acetic acid had a peak in MBCaM-1 expression 6 h after treatment initiation with a slight decline 3 h after the peak, while MBCaM-2 showed a steady but small increase over time as compared to MBCaM-1. When plants were subjected to salt stress they showed an increase in MBCaM-1 expression 2 h after treatment initiation reaching a maximum after 4 h with no further increase after 6 h, while MBCaM-2 remained unchanged over the time course.  相似文献   

15.
16.
17.
18.
19.
《Journal of Asia》2020,23(3):622-626
Investigating the interaction between insect pests and host plants at molecular level, provides an insight for effective implementation of plant resistance-based strategies in insect pest control programs. Heat shock proteins (HSPs) are found in all living organisms which protect them from biotic and abiotic stresses. Stress-activated protein kinases (SAPKs) are members of MPK kinases which also are activated upon cellular stresses. We investigated the effect of seed-primed canola plants with salicylic acid (SA) and the plants treated with dilute sulfuric acid on the regulation of two stress-related genes, HSP70 and SAPK/JNK genes in the cabbage aphid. The results of qRT-PCR revealed a statistically significant up-regulation of HSP70 gene expression in aphids feeding on sulfuric acid-treated plants in comparison with controls (P < 0.01). However, this gene was not regulated in aphids feeding on salicylic acid-treated plants. In addition, quantification of SAPK/JNK gene showed a significant effect in aphids feeding on SA-primed plants (P < 0.05) and a marginally significant effect in sulfuric acid treatment. Further, the expression of both genes were significantly changed in interaction effect between SA and sulfuric acid treatments. Finally, the induction of HSP70 and SAPK/JNK genes in this research might be related to activation of systemic acquired resistance in canola.  相似文献   

20.
Involvement of polyamines in plant response to abiotic stress   总被引:21,自引:0,他引:21  
Environmental stresses are the major cause of crop loss worldwide. Polyamines are involved in plant stress responses. However, the precise role(s) of polyamine metabolism in these processes remain ill-defined. Transgenic approaches demonstrate that polyamines play essential roles in stress tolerance and open up the possibility to exploit this strategy to improve plant tolerance to multiple environmental stresses. The use of Arabidopsis as a model plant enables us to carry out global expression studies of the polyamine metabolic genes under different stress conditions, as well as genome-wide expression analyses of insertional-mutants and plants over-expressing these genes. These studies are essential to dissect the polyamine mechanism of action in order to design new strategies to increase plant survival in adverse environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号