首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylated and total Hg, and TOC concentrations were measured in precipitation and runoff in a first order Precambrian Shield watershed, and in precipitation, throughfall, shallow groundwater and runoff in a zero Precambrian Shield watershed. Plots dominated by open lichen-covered bedrock and another containing small patches of conifer forest and thin discontinuous surficial deposits were monitored within the zero order catchment. Methyl (3–10 fold) and non-methyl (1.4–2.8 fold) Hg concentrations changed irregularly during rainfall and snowmelt runoff events in all catchments. Temporal patterns of Hg concentration in runoff included flushing and subsequent dilution as well as peak concentrations coinciding with peak or recession flow. Mercury export was highest from lichen-covered bedrock surfaces as a result of high runoff yields and minimal opportunity for physical retention and in the case of MeHg demethylation. Forest canopy and lichen/bedrock surfaces were often net sources for Hg while forest soils were mostly sinks. However, upland soils undergoing periodic reducing conditions appear to be sites for the in situ production of MeHg.  相似文献   

2.
Hygienic and microbiological examinations of watercourses are usually not carried out during heavy rainfall and runoff events. After rainfall or snowmelt, there are often massive increases in turbidity in flooding creeks in mountain ranges, which are frequently interpreted as an indication of microbial contamination. The aim of this study was to quantify the microbial loads of watercourses during such runoff events and to compare these loads with loads occurring during regular conditions. In a 14-month monitoring period we investigated the microbial loads of three tributaries of different drinking water reservoirs. A total of 99 water samples were taken under different runoff conditions and analyzed to determine physical, chemical, bacterial, and parasitic parameters. Thirty-two water samples were considered event samples during nine measuring series. The criteria for events, based on duration and intensity of precipitation, water depth gauge measurements, and dynamics, had been fixed before the investigation for each creek individually. Of the physical and chemical parameters examined, only the turbidity, pH, and nitrate values differed clearly from the values obtained for regular samples. Most of the bacteriological parameters investigated (colony, Escherichia coli, coliform, fecal streptococcal, and Clostridium perfringens counts) increased considerably during extreme runoff events. If relevant sources of parasitic contamination occurred in catchment areas, the concentrations of Giardia and Cryptosporidium rose significantly during events. The results show that substantial shares of the total microbial loads in watercourses and in drinking water reservoirs result from rainfall and extreme runoff events. Consequently, regular samples are considered inadequate for representing the microbial contamination of watercourse systems. The procedures for raw water surveillance in the context of multiple-barrier protection and risk assessment ought to include sampling during extreme runoff situations.  相似文献   

3.
There are many proposed and ongoing commercial, industrial, and residential developments within the Darwin Harbour catchment in Northern Australia, to accommodate the projected population growth over the next 20 years. Hence, it is necessary to ensure the balance between these developments and ecosystem conservation. We evaluated ecological risk for the Darwin Harbour using a relative risk model (RRM). The catchment was divided into 22 risk regions based on small catchment boundaries and their homogeneity. Through the RRM, we ranked and summed the stressors and habitats within regions. The interaction between stressors and habitats were modeled through exposure and effect filters. The ecological assessment endpoints were maintenance of the mangrove health and the maintenance of water quality. The risk regions—Myrmidon Creek, Blackmore River, Bleesers Creek, and Elizabeth River—showed the highest total relative risk for ecological assets. These risk regions had a high percentage cover of industrial, commercial, and residential areas; diffuse entry points; and climate change effects. Creek A, Sandy Creek, West Arm, and Pioneer Creek were the risk regions with lowest total relative risk scores. The RRM is a robust application that is suitable for a large geographic area where multiple stressors are of concern.  相似文献   

4.
黄土高原不同植被覆盖对流域水文的影响   总被引:7,自引:0,他引:7  
张建军  纳磊  董煌标  王鹏 《生态学报》2008,28(8):3597-3605
以山西省吉县蔡家川流域为对象,研究了植被覆盖类型对流域水文的影响.结果表明:不同植被覆盖的流域年径流系数分别为:林地流域1.6%~2.3%,以农、牧为主的流域3.1%~3.9%;各流域基流系数差异显著,人工林流域为零,次生林为主的流域1.0%~1.5%,以农、牧为主的流域2.5%~2.8%;在雨季人工林流域的径流总量是次生林流域的3.37倍、农地流域的1.9倍,而农地流域的基流量是次生林流域的2.2倍;短历时高强度降雨条件下,人工林流域、次生林流域地表径流量分别是农地流域的10.8倍和2.2倍;在历时较长的暴雨条件下,人工林流域单位面积上的洪峰流量是农地流域的3.4倍,次生林流域的6.9倍;在长历时、大雨量条件下,农地流域的径流量是次生林流域的1.8倍.水平梯田的水源涵养功能与次生林植被相当,次生林植被的水源涵养功能远好于人工植被,在水资源短缺的黄土高原应提倡植被的自然恢复.  相似文献   

5.
Kangur  Külli  Möls  Tõnu  Milius  Anu  Laugaste  Reet 《Hydrobiologia》2003,494(1-3):265-270
To clarify the sediment yield processes following a disturbance by a forest fire in a mountainous catchment, and considering the hydrological and geomorphological processes in the headwater, we measured bedload sediment yield at rainfall events in disturbed and secondary forest catchments in the western part of Japan. The three catchments were under different hydrogeological conditions. The IK, TB and TY catchments were disturbed by forest fires in 2000, 1994, and 1978, respectively. In the IK catchment, although runoff response to rainfall was fastest with high peak flows, the catchment also had the highest base flow. Moreover, the annual sediment yield there was about ten times as high as in the other two catchments, and it was found that there was a steep linear curve in the relationship between precipitation and bedload sediment yield. This is thought to be caused by overland flow generation following water repellency on the slopes, and by the accumulated sediment that forms the thick soil layer on the valley bottom. On the other hand, in the TB catchment runoff experienced high peak flows at rainfall events and low base flows, and there was a gradual linear curve in the precipitation–sediment yield relationship. This might be the result of there being a thin soil layer on the hillslope and on the valley bottom because of successive erosion after the fire. In the TY catchment, runoff had a low peak flow at rainfall events and a high base flow; and the bedload sediment yield increased exponentially with increasing precipitation. Therefore, sediment yield in the TB catchment was more than that in the TY during storm events with precipitation of less than 100 mm, whereas it was the opposite during heavier rainfalls. It indicates that there is a thick soil layer on the slope and a thin soil layer on the valley bottom in the TY catchment following the recovering of vegetation, and that the sediment yield process predominates only during big rainfall events, only then does subsurface flow generate.  相似文献   

6.
Runoff quantity and quality from a 248 m2 extensive green roof and a control were compared in Connecticut using a paired watershed study. Weekly and individual rain storm samples of runoff and precipitation were analyzed for TKN, NO3 + NO2-N, NH3-N, TP, PO4-P, and total and dissolved Cu, Pb, Zn, Cd, Cr, and Hg. The green roof watershed retained 51.4% of precipitation during the study period based on area extrapolation. Overall, the green roof retained 34% more precipitation than predicted by the paired watershed calibration equation. TP and PO4-P mean concentrations in green roof runoff were higher than in precipitation but lower than in runoff from the control. The green roof was a sink for NH3-N, Zn, and Pb, but not for TP, PO4-P, and total Cu. It also reduced the mass export of TN, TKN, NO3 + NO2-N, Hg, and dissolved Cu primarily through a reduction in stormwater runoff. Greater than 90% of the total Cu, Hg, and Zn concentrations in the green roof runoff were in the dissolved form. The growing media and slow release fertilizer were probable sources of P and Cu in green roof runoff. Overall, the green roof was effective in reducing stormwater runoff and overall pollutant loading for most water quality contaminants.  相似文献   

7.
Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries.  相似文献   

8.
The main trend in land-use changes in the Porijõgi River catchment, south Estonia, is a significant increase in abandoned lands (from 1.7% in 1987 to 10.5% in 1997), and a decrease in arable lands (from 41.8 to 23.9%). Significant climatic fluctuations occurred during the last decades. Milder winters (increase of air temperature in February from −7.9 to −5.5°C during the period 1950–1997) and a change in the precipitation pattern have influenced the mean annual water discharge. This results in more intensive material flow during colder seasons and decreased water runoff in summer. During the period 1987–1997 the runoff of total-N, total-P, SO4, and organic material (after BOD5) decreased from 25.9 to 5.1, from 0.32 to 0.13, from 78 to 48, and from 7.4 to 3.5 kg ha−1 year−1, respectively. Most significant was a 4–20-fold decrease in agricultural subcatchments while in the forested upper-course catchment the changes were insignificant. Variations of total-N, and total-P runoff in both the entire catchment and its agricultural subcatchments are well described by the change of land use (including fertilization intensity), soil parameters and water discharge. In small agricultural subcatchments the rate of fertilization was found to be the most important factor affecting nitrogen runoff, while land-use pattern plays the main role in larger mosaic catchments. Ecotechnological measures (e.g. riparian buffer zones and buffer strips, constructed wetlands) to control nutrient flows from agricultural catchments are very important.  相似文献   

9.
A large amount of soil loss is caused by a small number of extreme events that are mainly responsible for the time compression of geomorphic processes. The aim of this study was to analyze suspended sediment transport during extreme erosion events in a mountainous watershed. Field measurements were conducted in Wangjiaqiao, a small agricultural watershed (16.7 km2) in the Three Gorges Area (TGA) of China. Continuous records were used to analyze suspended sediment transport regimes and assess the sediment loads of 205 rainfall–runoff events during a period of 16 hydrological years (1989–2004). Extreme events were defined as the largest events, ranked in order of their absolute magnitude (representing the 95th percentile). Ten extreme erosion events from 205 erosion events, representing 83.8% of the total suspended sediment load, were selected for study. The results of canonical discriminant analysis indicated that extreme erosion events are characterized by high maximum flood-suspended sediment concentrations, high runoff coefficients, and high flood peak discharge, which could possibly be explained by the transport of deposited sediment within the stream bed during previous events or bank collapses.  相似文献   

10.
The seasonal pattern and primary mechanism of nitrogen (N) export by surface runoff from the Wuchuan subwatershed (WCW), an agricultural upper watershed (1.88 km2) located in southeast China, were investigated based on extensive streamwater measurements in 2004–2005 under subtropical climatic conditions. The results disclosed a highly variable but strong linkage between hydrological and anthropogenic controls and N export. N export via surface runoff presented a significant seasonal pattern caused by changes in rainfall and watershed N input. Approximately 75% of the annual N export (67 kg ha−1) was flushed by those storm runoff mainly occurred during the wet season (March through September). The WCW dataset of N concentrations and loads during both baseflow and stormflow implied an interactive effects of anthropogenetic N input and hydrology conditions: N export was flush-driven in late spring, summer and autumn (wet season), but highly related with soil N in winter and early spring. Compared to undisturbed watersheds under similar rainfall conditions, WCW exported a considerable amount of N due to intensive fertilizer application (a mean of 690 kg N ha−1 year−1, commonly as surface applications). This work provides a first characterization of a small agricultural Chinese catchment under subtropical climates and its associated N export behavior.  相似文献   

11.
Mountainous catchments are usually not in focus of the modelling of nutrient fluxes on catchment scale. Out of 9 model approaches tested in the EU‐project EUROHARP only MONERIS claims to be capable of modelling nitrogen and phosphorus emissions in a landscape with mountainous slope. Results derived in the present study indicate that the MONERIS 2.14 model in its current version is not able to reproduce the measured nutrient loads in rivers from alpine catchments in Austria with a size of 70 to 400 km2. Despite this apparent limitation, MONERIS delivers a framework flexible enough to offer the possibility for the introduction of adaptations to regions that had not been a focus during its development. Significant improvements in model performance have been achieved during this study with relatively simple adaptations: (i) calibration a snowmelt constants, (ii) adaptation of the nitrogen balance for open and naturally covered areas, (iii) adaptation of the denitrification approach for groundwater of solid rock areas with low nitrogen surplus and high amount of leakage water, (iv) introduction of the differentiation of area‐specific suspended solids emission factors for mountainous open areas covered either with glaciers or not, (v) definition of new input parameters for phosphorus concentrations in solid limestone and schist/gneiss rocks and of dissolved phosphorus concentrations in surface runoff and groundwater flow for mountainous areas. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Dramatic changes in imperviousness exert significant influence on the rainfall-runoff process in urban catchments. In urban rainwater management, imperviousness is generally adopted as an effective indicator for assessing potential runoff risk. However, the effects of imperviousness on rainfall-runoff at the scale of small urbanized drainage areas have not been fully determined, particularly when various storm characteristics are considered. In this paper, a model-based analysis is conducted in a typical urban residential catchment in Beijing, China, in which 69 subareas are delineated within the catchment as the basic drainage units. Two metrics, total impervious area (TIA) and directly connected impervious area (DCIA), are employed to quantify the spatial characteristics of imperviousness of the subareas. Three runoff variables within the delineated subareas including total runoff depth (Qt), peak runoff depth (Qp), and lag time (Tlag) are simulated by using the Storm Water Management Model (SWMM) to represent the specific rainfall-runoff characteristics. Moreover, model input storms are designated to several typical flood-induced rainfall events with varying amounts, locations of rainfall peak, and durations for holistic assessment of imperviousness. Regression analyses are conducted to explore the contributions and relative significances of impervious metrics in predicting runoff variables under various storm cases. The results indicate that the performances of imperviousness with fine spatial scale (<1 ha) and heavy rainfall conditions (>34 mm) may vary markedly according to storm conditions. Specifically, TIA rather than DCIA acts as a dominate factor affecting total runoff, and its significance maintains relatively stable with various storm conditions. In addition, the combined use of both TIA and DCIA are more effective for predicting peak runoff than that using a single impervious metric; however, rainfall amount, peak location, and duration alter the contribution gaps between TIA and DCIA and the overall performance of the regression model. Moreover, DCIA is more likely to affect runoff lag time without the contribution of TIA; however, an increase in rainfall peak ratio or duration will significantly limit its performance. These results can provide insight into the hydrologic performance of imperviousness, which is essential for landscape design and runoff regulation in small urban catchments.  相似文献   

13.
分析鼎湖山3种植被类型生态系统水文的长期连续观测资料,采用时空互代的方法,得到如下一些结果:1)鼎湖山自然保护区东沟集水区产水量达到降水量的66.5%,日径流量高峰的出现相对降水的发生滞后1d左右。2)地下水位平均稳定在2.22m,最低为2.84m,最高为1.14m。1999、2000、2001、2002和2003年地下水位平均值分别为2.38,2.27,2.08,2.13和2.11m。鼎湖山东沟集水区每日地下水位与前16d每一天的降水量相关。3)随着时间推移3种不同的植物群落中土壤含水量都有减少的趋势。季风林(p<0.01)和混交林(p<0.05)的土壤含水量减少趋势具有统计上的显著性,松林除外。4)鼎湖山3个处于不同演替阶段的植物群落其穿透水量与大气降水皆呈线性相关,它们的R2值随演替的进展而减小。穿透水占大气降水的比例也随演替进展而减少,松林、混交林和季风林分别为83.4%、68.3%和59.9%。松林、混交林和季风林的树干茎流占大气降水的比例分别为1.9%、6.5%和8.3%。树干茎流和胸径的关系受控于整个群落整体的影响而不仅仅是某个单一物种,并且群落的郁闭程度和结构是影响降水在林内再次分配的关键因素。季风林2月大气降水28.7mm林冠截流率为83.3%,而在大气降水为297.8mm的6月林冠截留率仅为18.9%,并且随着植物群落的演替,从松林、混交林到季风林的过程中林冠截留逐渐增大。  相似文献   

14.
Escherichia coli are widely used as indicators of fecal contamination, and in some cases to identify host sources of fecal contamination in surface water. Prevalence, genetic diversity and antimicrobial susceptibility were determined for 600 generic E. coli isolates obtained from surface water and sediment from creeks and channels along the middle Santa Ana River (MSAR) watershed of southern California, USA, after a 12 month study. Evaluation of E. coli populations along the creeks and channels showed that E. coli were more prevalent in sediment compared to surface water. E. coli populations were not significantly different (P = 0.05) between urban runoff sources and agricultural sources, however, E. coli genotypes determined by pulsed-field gel electrophoresis (PFGE) were less diverse in the agricultural sources than in urban runoff sources. PFGE also showed that E. coli populations in surface water were more diverse than in the sediment, suggesting isolates in sediment may be dominated by clonal populations.Twenty four percent (144 isolates) of the 600 isolates exhibited resistance to more than one antimicrobial agent. Most multiple resistances were associated with inputs from urban runoff and involved the antimicrobials rifampicin, tetracycline, and erythromycin. The occurrence of a greater number of E. coli with multiple antibiotic resistances from urban runoff sources than agricultural sources in this watershed provides useful evidence in planning strategies for water quality management and public health protection.  相似文献   

15.
The Pacific Decadal Oscillation (PDO) is a large-scale climatic phenomenon modulating ocean-atmosphere variability on decadal time scales. While precipitation and river flow variability in the Great Barrier Reef (GBR) catchments are sensitive to PDO phases, the extent to which the PDO influences coral reefs is poorly understood. Here, six Porites coral cores were used to produce a composite record of coral luminescence variability (runoff proxy) and identify drivers of terrestrial influence on the Keppel reefs, southern GBR. We found that coral skeletal luminescence effectively captured seasonal, inter-annual and decadal variability of river discharge and rainfall from the Fitzroy River catchment. Most importantly, although the influence of El Niño-Southern Oscillation (ENSO) events was evident in the luminescence records, the variability in the coral luminescence composite record was significantly explained by the PDO. Negative luminescence anomalies (reduced runoff) were associated with El Niño years during positive PDO phases while positive luminescence anomalies (increased runoff) coincided with strong/moderate La Niña years during negative PDO phases. This study provides clear evidence that not only ENSO but also the PDO have significantly affected runoff regimes at the Keppel reefs for at least a century, and suggests that upcoming hydrological disturbances and ecological responses in the southern GBR region will be mediated by the future evolution of these sources of climate variability.  相似文献   

16.
Seven Wisconsin rivers with contrasting, relativelyhomogeneous watershed composition were selected toassess the factors controlling mercury transport.Together, these watersheds allow comparisons ofwetland, forest, urban and agricultural land-uses.Each site was sampled nine times between September1993 and September 1994 to establish seasonalsignatures and transport processes of total mercury(HgT) and methylmercury (MeHg). Our resultsclearly show that land use and land cover stronglyinfluence mercury transport processes. Under base-flowconditions, unfiltered MeHg yield varies by a factorof sixteen (12–195 mg km-2 d-1), andincreases with the fraction of wetland area in thewatershed. Elevated mercury yields during high floware particle-phase associated in agricultural sites,but filtered-phase associated in wetland sites.Methylmercury represented less than 5% of totalmercury mobilized during the spring thaw across allwatersheds. Autumn MeHg yield was generally 11–15%of HgT in wetland influenced watersheds, thougha maximum of 51% was observed. In some cases, singlehigh-flow events may dominate the annual export ofmercury from a watershed. For example, one high-flowevent on the agricultural Rattlesnake Creek had thelargest HgT and MeHg yield in the study (107 and2.32 mg km-2 d-1, respectively). The mass ofmercury transported downstream by this single eventwas an order of magnitude larger than the eight other(non-event) sampling dates combined. These resultsunderscore the importance of watershed characteristicsand seasonal events on the fate of mercury in freshwater rivers.  相似文献   

17.
Suburbanization negatively impacts aquatic systems by altering hydrology and nutrient loading. These changes interact with climate and aquatic ecosystem processes to alter nutrient flux dynamics. We used a long term data set (1993–2009) to investigate the influence of suburbanization, climate, and in-stream processes on nitrogen and phosphorus export in rivers draining the Ipswich and Parker River watersheds in northeastern MA, USA. During this timeframe population density increased in these watersheds by 14 % while precipitation varied by 46 %. We compared nutrient export patterns from the two larger watersheds with those from two nested headwater catchments collected over a nine year period (2001–2009). The headwater catchments were of contrasting, but stable, land uses that dominate the larger watersheds (suburban and forested). Despite ongoing land use change and an increase in population density in the mainstem watersheds, we did not detect an increase in dissolved inorganic nitrogen (DIN) or PO4 concentration or export over the 16-year time period. Inter-annual climate and associated runoff variability was the major control. Annual DIN and PO4 export increased with greater annual precipitation in the Ipswich and the Parker River watersheds, as well as the forested headwater catchment. In contrast, annual DIN export fluxes from the suburban headwater catchment were less affected by precipitation variability, with inter-annual export fluxes negatively correlated with mean annual temperature. The larger watershed exports diverged from headwater exports, particularly during summer, low-flow periods, suggesting retention of DIN and PO4. Our study shows suburban headwater exports respond to inter-annual variation in runoff and climate differently than forested headwater exports, but the impacts from headwater streams could be buffered by the river network. The net effect is that inter-annual variation and network buffering can mitigate higher nutrient exports from larger suburbanizing watersheds over decadal time periods.  相似文献   

18.
鹤山丘陵草坡的水文特征及水量平衡   总被引:12,自引:1,他引:11       下载免费PDF全文
 在中国科学院鹤山丘陵综合开放实验站的草坡集水区对大气降水和径流进行了连续4年的观测,并于1994年对该集水区的蒸散进行了测定,结果表明:1)鹤山丘陵区年均降水量1761.37mm,大气降水有明显的干湿季之分,干季降水量占全年降水量的12.47%,湿季占87.53%。年均降水量中有62.24%可引起地表产流,即年均产流降水量1096.3mm。产流降水以中、小雨频度为大,但产流水量主要由大、暴雨供给。文中根据降雨量较大地区的降水、产流特征和规律,提出了产流降水和产流水量的概念。2)鹤山丘陵草坡集水区年总径流系数50.12%,地表径流系数17.33%。地表径流主要集中在湿季产生,与降水量呈二次抛物线型回归关系,与降水强度关系不大。3)1994年水量平衡各分量中,实际降水输入1841.55mm,年径流量970.28mm,径流系数52.69%,径流是系统的最大输出项;蒸散量851.56mm,意味着年降水收入中46.24%的水量以汽态形式返回了大气。蒸散的月变化呈双峰型,不同于降水的季节分配,径流的月变化则与降水同步。系统蓄水年变化量19.71mm,约占年降水量的1.07%,但其月变化却非常大,在一68~104mm之间。草坡集水区的水量平衡是一种收入对支出的补给和收支项目中可变性的动态平衡。4)鹤山丘陵草坡水热季节分配失衡、产流降水量和地表径流量大是这种退化生态系统恢复的3个限制因素;认为退化生态系统恢复过程中系统水量支出和蓄留方式的转变是退化生态系统的恢复机理之一。  相似文献   

19.
降雨和景观格局是影响流域径流过程的两大主要因素,开展二者的径流效应研究对流域水资源管理、生态建设等具有重要意义。本研究以赣南红壤丘陵区的濂水流域为对象,基于1958—2020年的降雨、径流和土地利用数据,分析降雨、景观格局和径流的变化特征,以及降雨、景观格局与年径流、洪枯径流的关系。结果表明: 研究期间,流域年降雨量、年径流量、年最大1 d径流量均呈非显著下降趋势,年最小1 d径流量呈非显著上升趋势且年际变化幅度最大;有林地为流域内占比最高的景观类型,其他林地的变化最剧烈;景观水平上,流域的Shannon多样性指数、Shannon均匀度指数、斑块密度、景观形状指数分别由1980年的1.125、0.541、0.667、16.925上升至2020年的1.348、0.614、0.731、18.172,景观蔓延度指数由1980年的68.237下降至2020年的64.293,流域整体景观多样性、破碎化程度、形状复杂程度提高,空间分布趋于均匀,连通性降低。降雨量与年径流、洪水径流、枯水径流的相关系数分别为0.907、0.594、0.558;类型水平上,耕地减少对年径流、洪枯径流的影响均较大,而景观水平上的整体变化促进了年径流和洪水径流减少、枯水径流增加。降雨变化和景观格局演变对年径流、洪水径流和枯水径流变化的贡献率分别为17.8%、82.2%,1.5%、98.5%和-8.8%、108.8%。研究成果可为流域景观格局配置、水土流失综合治理等提供理论参考。  相似文献   

20.
定量认识和理解气候与流域特征变化对淮河流域地表水文过程的影响,可以为科学管理淮河流域水资源提供重要的理论参考和技术支撑。评估了多控制因子联立求解归因方法的适用性,以此量化了淮河流域气候和Budyko参数n对不同年代蒸散发(ET)、径流变化(较基准期1961—1980年)的贡献,并且进行了归因分析,结果表明:1)多控制因子联立求解法可以准确有效地分离气候和参数n对ET和径流变化的贡献。2)在气候和参数n变化的共同影响下,20世纪80年代、90年代的ET和径流在沂沭泗河各水文分区均呈减小趋势,而在上游和中游各水文分区的变化则表现出明显的时空差异性。3)就各年代控制ET变化的主要因子,多数水文分区为参数n,其次为降水和潜在蒸散发(PET),分别集中在沂沭泗河地区和淮河上游。20世纪80年代,中游水文分区径流变化的主控因子为PET,其他水文分区则多为降水;而20世纪90年代和21世纪初多数水文分区的主控因子为参数n,其次为降水。总之,控制淮河流域ET和径流变化的物理机制具有明显的空间差异和年代际变化特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号