共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Arsenic toxicity,mutagenesis, and carcinogenesis – a health risk assessment and management approach 总被引:4,自引:0,他引:4
A comprehensive analysis of published data indicates that arsenic exposure induces cardiovascular diseases, developmental abnormalities, neurologic and neurobehavioral disorders, diabetes, hearing loss, hematologic disorders, and various types of cancer. Although exposure may occur via the dermal, and parenteral routes, the main pathways of exposure include ingestion, and inhalation. The severity of adverse health effects is related to the chemical form of arsenic, and is also time- and dose-dependent. Recent reports have pointed out that arsenic poisoning appears to be one of the major public health problems of pandemic nature. Acute and chronic exposure to arsenic has been reported in several countries of the world where a large proportion of drinking water (groundwater) is contaminated with high concentrations of arsenic. Research has also pointed significantly higher standardized mortality rates for cancers of the bladder, kidney, skin, liver, and colon in many areas of arsenic pollution. There is therefore a great need for developing a comprehensive health risk assessment (RA) concept that should be used by public health officials and environmental managers for an effective management of the health effects associated with arsenic exposure. With a special emphasis on arsenic toxicity, mutagenesis, and carcinogenesis, this paper is aimed at using the National Academy of Science's RA framework as a guide, for developing a RA paradigm for arsenic based on a comprehensive analysis of the currently available scientific information on its physical and chemical properties, production and use, fate and transport, toxicokinetics, systemic and carcinogenic health effects, regulatory and health guidelines, analytical guidelines and treatment technologies. 相似文献
5.
6.
7.
Bobby L. Johnson III Holly S. Goetzman Priya S. Prakash Charles C. Caldwell 《Biochemical and biophysical research communications》2013
Despite advances in understanding and treatment of sepsis, it remains a disease with high mortality. Neutrophil Derived Microparticles (NDMPs) are present during sepsis and can modulate the immune system. As TNF-α is a cytokine that predominates in the initial stages of sepsis, we evaluated whether and how TNF-α can induce NDMPs in mice. We observed that TNF-α treatment results in increased NDMP numbers. We also determined that the activation of either TNF receptor 1 (TNFr1) or TNF receptor 2 (TNFr2) resulted in increased NDMP numbers and that activation of both resulted in an additive increase. Inhibition of Caspase 8 diminishes NDMPs generated through TNFr1 activation and inhibition of NF-κB abrogates NDMPs generated through activation of both TNFr1 and TNFr2. We conclude that the early production of TNF-α during sepsis can increase NDMP numbers through activation of the Caspase 8 pathway or NF-κB. 相似文献
8.
9.
10.
K. B. Ruiz E. A. Martínez F. Orsini F. Antognoni S.-E. Jacobsen 《Plant biosystems》2016,150(2):357-371
Quinoa (Chenopodium quinoa Willd.) is an ancient Andean crop that produces edible seeds and leaves. Quinoa's tolerance to salinity and other types of abiotic stresses provides it with high potential in a world where scarcity of water and increased soil salinization are important causes of crop failures. Due to its traditionally broad cultivation area (from Colombia to southern Chile), there is a wide range of quinoa cultivars adapted to specific conditions displaying a broad genetic variability in stress tolerance. In addition, being practically unique as a halophytic seed-producing crop with amazing nutritional properties, it is ideal as a model species for investigating morphological, cellular, physiological, and bio-molecular mechanisms of salinity tolerance. This review summarizes current knowledge of genotype-dependent variability in salinity responses and adaptive salt-tolerance mechanisms in quinoa. These include anatomical features and physiological aspects, such as osmotic adjustment through accumulation of ions, osmoprotectants, and sodium loading, transport, and storage, including the activity and gene expression of plasma and vacuolar membrane transporters. Finally, current knowledge regarding the effect of salinity on the nutritional properties of quinoa is discussed. 相似文献
11.
12.
13.
Among the eight naturally occurring vitamin E analogs, γ-tocotrienol (GT3) is a particularly potent radioprophylactic agent in vivo. Moreover, GT3 protects endothelial cells from radiation injury not only by virtue of its antioxidant properties but also by inhibition of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase and by improving the availability of the nitric oxide synthase cofactor tetrahydrobiopterin. Nevertheless, the precise mechanisms underlying the superior radioprotective properties of GT3 compared with other tocols are not known. This study, therefore, examined the differences in gene expression profiles between GT3 and its tocopherol counterpart, γ-tocopherol, as well as between GT3 and α-tocopherol in human endothelial cells. Cells were treated with vehicle or the appropriate tocol for 24 h, after which total RNA was isolated and genome-wide gene expression profiles were obtained using the Illumina platform. GT3 was far more potent in inducing gene-expression changes than α-tocopherol or γ-tocopherol. In particular, GT3 induced multiple changes in pathways known to be of importance in the cellular response to radiation exposure. Affected GO functional clusters included response to oxidative stress, response to DNA damage stimuli, cell cycle phase, regulation of cell death, regulation of cell proliferation, hematopoiesis, and blood vessel development. These results form the basis for further studies to determine the exact importance of differentially affected GO functional clusters in endothelial radioprotection by GT3.
Electronic supplementary material
The online version of this article (doi:10.1007/s12263-011-0228-8) contains supplementary material, which is available to authorized users. 相似文献14.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2002,1571(3):211-218
Tachpyr (N,N′N″-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane), a novel metal chelator, was previously shown to deplete intracellular iron and exert a cytotoxic effect on cultured bladder cancer cells. Tachpyr binds Fe(II) and readily reduces Fe(III). The iron(II)–Tachpyr chelate undergoes intramolecular oxidative dehydrogenation resulting in mono- and diimino Fe(II) complexes. The present study investigates the redox-activity of the Tachpyr–iron complex to better define the mechanism of Tachpyr's cytotoxicity. Tachpyr's mechanism of cytotoxicity was studied using cell-free solutions, isolated DNA, and cultured mammalian cells by employing UV–VIS spectrophotometry, oximetry, spin-trapping technique, and electron paramagnetic resonance (EPR) spectrometry. The results show that: (1) Tachpyr by itself after 24 h of incubation had a cytotoxic effect on cultured cells; (2) fully oxidized Tachpyr had no cytotoxic effects on cultured cells even after 24 h of incubation; (3) Tachpyr protected isolated DNA against H2O2-induced damage, but not against HX/XO-induced damage; and (4) Tachpyr–Fe(II) chelate slows down but does not block oxidation of Fe(II), allows O2−-induced or Tachpyr-induced reduction of Fe(III), and consequently promotes production of OH through the Haber–Weiss reaction cycle. The results indicate that Tachpyr can protect cells against short-term, metal-mediated damage. However, upon prolonged incubation, Tachpyr exerts cytotoxic effects. Therefore, in addition to iron depletion, low-level oxidative stress, which in part occurs because of redox cycling of the coordinated iron ion, may contribute to the cytotoxic effects of Tachpyr. 相似文献
15.
Spencer NJ Nicholas SJ Robinson L Kyloh M Flack N Brookes SJ Zagorodnyuk VP Keating DJ 《American journal of physiology. Gastrointestinal and liver physiology》2011,301(3):G519-G527
The mechanisms underlying distension-evoked peristalsis in the colon are incompletely understood. It is well known that, following colonic distension, 5-hydroxytryptamine (5-HT) is released from enterochromaffin (EC) cells in the intestinal mucosa. It is also known that exogenous 5-HT can stimulate peristalsis. These observations have led some investigators to propose that endogenous 5-HT release from EC cells might be involved in the initiation of colonic peristalsis, following distension. However, because no direct evidence exists to support this hypothesis, the aim of this study was to determine directly whether release of 5-HT from EC cells was required for distension-evoked colonic peristalsis. Real-time amperometric recordings of 5-HT release and video imaging of colonic wall movements were performed on isolated segments of guinea pig distal colon, during distension-evoked peristalsis. Amperometric recordings revealed basal and transient release of 5-HT from EC cells before and during the initiation of peristalsis, respectively. However, removal of mucosa (and submucosal plexus) abolished 5-HT release but did not inhibit the initiation of peristalsis nor prevent the propagation of fecal pellets or intraluminal fluid. Maintained colonic distension by fecal pellets induced repetitive peristaltic waves, whose intrinsic frequency was also unaffected by removal of the submucosal plexus and mucosa, although their propagation velocities were slower. In conclusion, the mechanoreceptors and sensory neurons activated by radial distension to initiate peristalsis lie in the myenteric plexus and/or muscularis externa, and their activation does not require the submucosal plexus, release of 5-HT from EC cells, nor the presence of the mucosa. The propagation of peristalsis and propulsion of liquid or solid content along the colon is entrained by activity within the myenteric plexus and/or muscularis externa and does not require sensory feedback from the mucosa, nor neural inputs arising from submucosal ganglia. 相似文献
16.
《基因组蛋白质组与生物信息学报(英文版)》2001,(Z1)
Cellular Mechanisms Underlying the Formation of HCO_3-Rich Uterine Fluid and Possible Implications in Fertility 相似文献
17.
《Cytokine & growth factor reviews》2014,25(4):473-482
Vascular endothelial growth factor (VEGF) is a key growth factor driving angiogenesis (i.e. the formation of new blood vessels) in health and disease. Pharmacological blockade of VEGF signaling to inhibit tumor angiogenesis is clinically approved but the survival benefit is limited as patients invariably acquire resistance. This is partially mediated by the intrinsic flexibility of tumor cells to adapt to VEGF-blockade. However, it has become clear that tumor stromal cells also contribute to the resistance. Originally, VEGF was thought to specifically target endothelial cells (ECs) but it is now clear that many stromal cells also respond to VEGF signaling, making anti-VEGF therapy more complex than initially anticipated. A more comprehensive understanding of the complex responses of stromal cells to VEGF-blockade might inform the design of improved anti-angiogenic agents. 相似文献
18.
Martina B?ttner Martina Barrenschee Ines Hellwig Jonas Harde Jan-Hendrik Egberts Thomas Becker Dimitri Zorenkov Karl-Herbert Sch?fer Thilo Wedel 《PloS one》2013,8(6)
Background & Aims
Absence of glial cell line-derived neurotrophic factor (GDNF) leads to intestinal aganglionosis. We recently demonstrated that patients with diverticular disease (DD) exhibit hypoganglionosis suggesting neurotrophic factor deprivation. Thus, we screened mRNA expression pattern of the GDNF system in DD and examined the effects of GDNF on cultured enteric neurons.Methods
Colonic specimens obtained from patients with DD (n = 21) and controls (n = 20) were assessed for mRNA expression levels of the GDNF system (GDNF, GDNF receptors GFRα1 and RET). To identify the tissue source of GDNF and its receptors, laser-microdissected (LMD) samples of human myenteric ganglia and intestinal muscle layers were analyzed separately by qPCR. Furthermore, the effects of GDNF treatment on cultured enteric neurons (receptor expression, neuronal differentiation and plasticity) were monitored.Results
mRNA expression of GDNF and its receptors was significantly down-regulated in the muscularis propria of patients with DD. LMD samples revealed high expression of GDNF in circular and longitudinal muscle layers, whereas GDNF receptors were also expressed in myenteric ganglia. GDNF treatment of cultured enteric neurons increased mRNA expression of its receptors and promoted neuronal differentiation and plasticity revealed by synaptophysin mRNA and protein expression.Conclusions
Our results suggest that the GDNF system is compromised in DD. In vitro studies demonstrate that GDNF enhances expression of its receptors and promotes enteric neuronal differentiation and plasticity. Since patients with DD exhibit hypoganglionosis, we propose that the observed enteric neuronal loss in DD may be due to lacking neurotrophic support mediated by the GDNF system. 相似文献19.
20.
Mitochondrial mutations may increase oxidative stress: Implications for carcinogenesis and aging? 总被引:22,自引:0,他引:22
The sensitivity of mitochondrial DNA to damage by mutagens predisposes mitochondria to injury on exposure of cells to genotoxins or oxidative stress. Damage to the mitochondrial genome causing mutations or loss of mitochondrial gene products, or to some nuclear genes encoding mitochondrial membrane proteins, may accelerate release of reactive species of oxygen. Such aberrant mitochondria may contribute to cellular aging and promotion of cancer. 相似文献