共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhiyuan Zhang Guodong He Yang Lv Yu Liu Zhengchuan Niu Qingyang Feng Ronggui Hu Jianmin Xu 《Cell death & disease》2022,13(1)
E3 ligase is widely reported to exert fundamental functions in cancers. Through rigorous bioinformatic analysis concentrating E3 ligases based on data from Genotype-Tissue Expression (GTEx) and data from The Cancer Genome Atlas (TCGA), HERC3 was indicated to be downregulated in colorectal cancer (CRC) and HERC3 downregulation showed poor overall survival (OS) and disease-free survival (DFS). Through qRT-PCR, western blotting and Immunohistochemistry (IHC), analytical results were validated based on tissues in Zhongshan hospital. Functionally, HERC3 was indicated to inhibit the migration, invasion and metastasis in vitro and in vivo through transwell assays, wound healing assays and vivo experiments. And HERC3 could regulate epithelial-mesenchymal transition (EMT) in CRC. Furthermore, immunoprecipitation (IP), coimmunoprecipitation (co-IP) and GST-pulldown assays indicated that HERC3 could directly interact with EIF5A2 in vitro and in vivo through the RCC1 domain in HERC3. And HERC3 could function as an E3 to promote the K27 and K48-linked ubiquitination degradation of EIF5A2 via the HECT domain in HERC3, besides, K47, K67, K85, and K121 in EIF5A2 were identified as ubiquitination sites. In addition, HERC3 was indicated to affect the migration, invasion and metastasis and further regulatE EMT via EIF5A2/TGF-/Smad2/3 signal. The present study may provide insight into the mechanism of EMT in CRC.Subject terms: Ubiquitins, Gastrointestinal cancer 相似文献
2.
Jasiulionis MG Luchessi AD Moreira AG Souza PP Suenaga AP Correa M Costa CA Curi R Costa-Neto CM 《Cell biochemistry and function》2007,25(1):109-114
The eukaryotic translation initiation factor 5A (eIF5A) undergoes a specific post-translational modification called hypusination. This modification is required for the functionality of this protein. The compound N1-guanyl-1,7-diaminoheptane (GC7) is a potent and selective inhibitor of deoxyhypusine synthase, which catalyses the first step of eIF5A hypusination process. In the present study, the effects of GC7 on cell death were investigated using two cell lines: melan-a murine melanocytes and Tm5 murine melanoma. In vitro treatment with GC7 increased by 3-fold the number of cells presenting DNA fragmentation in Tm5 cells. Exposure to GC7 also decreased viability to both cell lines. This study also describes, for the first time, the in vivo antitumour effect of GC7, as indicated by impaired melanoma growth in C57BL/6 mice. 相似文献
3.
Lee SK Kim HN Kang YR Lee CW Kim HM Han DC Shin J Bae K Kwon BM 《Bioorganic & medicinal chemistry》2008,16(18):8397-8402
Neolignans such as obovatol, honokiol, and magnolol have been previously reported to show various biological activities including anti-inflammation and antitumor effects. This is the first demonstration on the in vivo antitumor effect of obovatol on human colorectal carcinoma SW620 cells. Nude mice were implanted with SW620 cells and fed with vehicle or 5mg/kg/d dose of obovatol for 20 days. Obovatol inhibited tumor growth that accounted for 50% decrease in tumor volume and 44.6% decrease in tumor weight at the end of the experiment without any adverse health effect. In nude mice bearing SW620-incubated tumor, obovatol exhibited more potent antitumor activity than honolkiol. In addition, DNA flow cytometric analysis shows that obovatol progresses to apoptosis as detected by flow cytometry after double staining with annexin V and propidium iodide. Thus, we suggest that obovatol is a potent inducer of cell apoptosis in SW620 cells, and a potent antitumor agent. 相似文献
4.
Genhua Yu Jiaqun Liao Junlan Wu Jun Ding 《Bioscience, biotechnology, and biochemistry》2018,82(10):1694-1701
Colorectal cancer is one of the most common causes of cancer-related deaths worldwide. Eukaryotic translation initiation factor 3, subunit H (EIF3H) is a subunit of EIF3, which is involved in mRNA recruitment and ribosomal complex disassembly and is known to be a driver of cell proliferation and survival in cancer. To investigate its function in colorectal cancer, the Oncomine database was used to evaluate the expression of EIF3H in human colorectal cancer and normal tissues. Then, we constructed a Lentivirus shorthair EIF3H vector (Lv-shEIF3H) to silence EIF3H expression in the colorectal cancer cell lines HCT116 and SW1116. We observed impaired cell growth and colony formation in these silenced cell lines. In addition, we showed that EIF3H knock-down led to cell apoptosis. In conclusion, EIF3H plays key roles in the apoptosis in colorectal cancer cells, which suggests EIF3H as a potential diagnostic biomarker in colorectal cancer. 相似文献
5.
ObjectiveThe role of exosomes in human cancers has been identified, while the effect of cancer-associated fibroblasts (CAFs)-derived exosomes (CAF-exos) transmitting microRNAs (miRNAs) on colorectal cancer (CRC) remains largely unknown. We aim to explore the impact of CAF-derived exosomal miR-135b-5p on CRC progression by targeting thioredoxin-interacting protein (TXNIP).MethodsCRC tissues were collected to obtain CAF-exos, which were used to co-culture with LoVo and HT29 cells. The effect of miR-135b-5p and TXNIP on the in vivo growth, in vitro proliferation, apoptosis, migration, invasion and angiogenesis of CRC cells. miR-135b-5p and TXNIP expression in exosomes and CRC cells were detected and their targeting relationship was confirmed.ResultsMiR-135b-5p was upregulated whereas TXNIP was downregulated in CRC tissues and cells. The CAF-exos and CAF-exos upregulating miR-135b-5p promoted in vivo growth, in vitro proliferation, migration and invasion, and suppressed apoptosis of CRC cells, and also promoted the HUVEC angiogenesis. TXNIP was confirmed as a target of miR-135b-5p and overexpression of TXNIP could weaken the pro-CRC effect of exosomal miR-135b-5p,ConclusionCAF-exos upregulate miR-135b-5p to promote CRC cell growth and angiogenesis by inhibiting TXNIP. 相似文献
6.
Xiangwei Li Xin Wang Jiahui Zhao Jian Wang Jingjing Wu 《Journal of cellular and molecular medicine》2021,25(7):3537-3547
Protein arginine methyltransferase 5 (PRMT5) is a type of methyltransferase enzyme that can catalyse arginine methylation of histones and non-histone proteins. Accumulating evidence indicates that PRMT5 promotes cancer development and progression. However, its function in colorectal cancer (CRC) is poorly understood. In this study, we revealed the oncogenic roles of PRMT5 in CRC. We found that PRMT5 promoted CRC cell proliferation, migration and invasion in vitro and in vivo. We identified minichromosome maintenance-7 (MCM7) as the direct PRMT5-binding partner. A co-immunoprecipitation (co-IP) assay indicated that PRMT5 physically interacted with MCM7 and that the direct binding domain was located between residues 1-248 in MCM7. In addition, our results from analysis of 99 CRC tissues and 77 adjacent non-cancerous tissues indicated that the PRMT5 and MCM7 expression levels were significantly higher in CRC tissues than in control tissues, which was further confirmed by bioinformatic analysis using TCGA and GEO datasets. We also found that MCM7 promoted CRC cell proliferation, migration and invasion in vitro. Furthermore, we observed that increased PRMT5 expression predicted unfavourable patient survival in CRC patients and in the subgroup of patients with a tumour size of ≤5 cm. These data suggested that PRMT5 and MCM7 might be novel potential targets for the treatment of CRC. 相似文献
7.
Hyvönen MT Keinänen TA Khomutov M Simonian A Vepsäläinen J Park JH Khomutov AR Alhonen L Park MH 《Amino acids》2012,42(2-3):685-695
The polyamines, putrescine, spermidine, and spermine, are ubiquitous multifunctional cations essential for cellular proliferation. One specific function of spermidine in cell growth is its role as a butylamine donor for hypusine synthesis in the eukaryotic initiation factor 5A (eIF5A). Here, we report the ability of novel mono-methylated spermidine analogs (α-MeSpd, β-MeSpd, γ-MeSpd, and ω-MeSpd) to function in the hypusination of eIF5A and in supporting the growth of DFMO-treated DU145 cells. We also tested them as substrates and inhibitors for deoxyhypusine synthase (DHS) in vitro. Of these compounds, α-MeSpd, β-MeSpd, and γ-MeSpd (but not ω-MeSpd) were substrates for DHS in vitro, while they all inhibited the enzyme reaction. As racemic mixtures, only α-MeSpd and β-MeSpd supported long-term growth (9-18 days) of spermidine-depleted DU145 cells, whereas γ-MeSpd and ω-MeSpd did not. The S-enantiomer of α-MeSpd, which supported long-term growth, was a good substrate for DHS in vitro, whereas the R-isomer was not. The long-term growth of DFMO-treated cells correlated with the hypusine modification of eIF5A by intracellular methylated spermidine analogs. These results underscore the critical requirement for hypusine modification in mammalian cell proliferation and provide new insights into the specificity of the deoxyhypusine synthase reaction. 相似文献
8.
Marc Cougnon Romain Carcy Nicolas Melis Isabelle Rubera Christophe Duranton Karine Dumas Jean-Franois Tanti Catherine Pons Nicolas Soubeiran Marina Shkreli Thierry Hauet Luc Pellerin Sbastien Giraud Nicolas Blondeau Michel Tauc Didier F. Pisani 《Cell death & disease》2021,12(4)
Inhibition of the eukaryotic initiation factor 5A activation by the spermidine analogue GC7 has been shown to protect proximal cells and whole kidneys against an acute episode of ischaemia. The highlighted mechanism involves a metabolic switch from oxidative phosphorylation toward glycolysis allowing cells to be transiently independent of oxygen supply. Here we show that GC7 decreases protein expression of the renal GLUT1 glucose transporter leading to a decrease in transcellular glucose flux. At the same time, GC7 modifies the native energy source of the proximal cells from glutamine toward glucose use. Thus, GC7 acutely and reversibly reprogrammes function and metabolism of kidney cells to make glucose its single substrate, and thus allowing cells to be oxygen independent through anaerobic glycolysis. The physiological consequences are an increase in the renal excretion of glucose and lactate reflecting a decrease in glucose reabsorption and an increased glycolysis. Such a reversible reprogramming of glucose handling and oxygen dependence of kidney cells by GC7 represents a pharmacological opportunity in ischaemic as well as hyperglycaemia-associated pathologies from renal origin.Subject terms: Cell biology, Physiology 相似文献
9.
Hongyu Li Xiaoli Ma Dongjie Xiao Yanfei Jia Yunshan Wang 《Journal of cellular biochemistry》2019,120(5):8447-8456
Gastric cancer (GC) is one of the most common cancers. Resistance to 5-fluorouracil (5-Fu)-based chemotherapy is a major cause of treatment failure followed by the poor prognosis of patients. In GC, it was reported that human differentiated embryonic chondrocyte-expressed gene 2 (DEC2), suppressed tumor proliferation and metastasis, but the effect of DEC2 on chemosensitivity of GC cells was unknown. In our study, we found that DEC2 can obviously increase the sensibility of GC cells to 5-Fu by promoting 5-Fu-induced apoptosis. DEC2 overexpression is significantly associated with decreased phosphorylation of STAT5A (P-STAT5A). More importantly, negative correlations between DEC2 with P-STAT5A expression were observed in tissue sections from GC patients. GC patients with low expression levels of DEC2 and high expression levels of P-STAT5A showed a poor prognosis. Furthermore, enhanced chemosensitivity mediated by DEC2 can be reversed by STAT5A which confer GC cells resistance to apoptosis induced by 5-Fu. Together, our results suggest that through inhibiting activation of STAT5A, DEC2 enhances 5-Fu-induced apoptosis and suppression of proliferation in GC cells. These findings will provide new insight for identifying potential targets that can be used to sensitize GC cells to chemotherapy. 相似文献
10.
11.
KIAA1524/CIP2A/cancerous inhibitor of protein phosphatase 2A is a cancer-promoting protein that stabilizes the MYC proto-oncogene protein by inhibiting its dephosphorylation. Our recent report demonstrates that KIAA1524/CIP2A supports cancer cell growth also at the level of the mechanistic target of rapamycin complex 1 (MTORC1), a key signaling module that drives cell growth by stimulating protein synthesis and inhibiting autophagy. KIAA1524/CIP2A suppresses MTORC1-associated protein phosphatase 2A (PP2A) activity in an allosteric manner thereby stabilizing the phosphorylation of MTORC1 substrates and keeping the cell in an anabolic mode. In the absence of growth stimulating signals or nutrients, reduced MTORC1 activity triggers SQSTM1/p62-dependent autophagic degradation of KIAA1524/CIP2A enhancing the PP2A-mediated dephosphorylation of MTORC1 substrates and MYC. Thus, KIAA1524/CIP2A emerges as an oncoprotein that can coordinate the growth-promoting activities of MTORC1 and MYC in response to environmental and intrinsic cues. 相似文献
12.
Lisa B. Frankel 《Autophagy》2018,14(7):1288-1289
13.
5-Fluorodeoxyuridine (FdUrd), a specific inhibitor of DNA synthesis,inhibits elongation growth in the cucumber hypocotyl. It alsoinhibits both DNA and RNA synthesis, as measured by incorporationof labelled precursors. Possible changes in internal pools orinhibition of RNA synthesis by conversion of FdUrd to 5-fluorouracil(FU) have been ruled out. The possible implications of these findings are discussed. (Received February 13, 1973; ) 相似文献
14.
BackgroundThe therapeutic potency of Rigosertib (RGS) in the treatment of the myelodysplastic syndrome has been investigated previously, but little is known about its mechanisms of action.MethodsThe present study integrates systems and molecular biology approaches to investigate the mechanisms of the anti-tumor effects of RGS, either alone or in combination with 5-FU in cellular and animal models of colorectal cancer (CRC).ResultsThe effects of RGS were more pronounced in dedifferentiated CRC cell types, compared to cell types that were epithelial-like. RGS inhibited cell proliferation and cell cycle progression in a cell-type specific manner, and that was dependent on the presence of mutations in KRAS, or its down-stream effectors. RGS increased both early and late apoptosis, by regulating the expression of p53, BAX and MDM2 in tumor model. We also found that RGS induced cell senescence in tumor tissues by increasing ROS generation, and impairing oxidant/anti-oxidant balance. RGS also inhibited angiogenesis and metastatic behavior of CRC cells, by regulating the expression of CD31, E-cadherin, and matrix metalloproteinases-2 and 9.ConclusionOur findings support the therapeutic potential of this potent RAS signaling inhibitor either alone or in combination with standard regimens for the management of patients with CRC. 相似文献
15.
16.
17.
18.
19.
20.
Mizue Inoue Hiroshi Nakada Yoshifumi Oka Nobuhiro Tanaka Ikuo Yamashina 《Glycoconjugate journal》1997,14(1):147-153
Novel glycoproteins carrying sialyl-LeA (SLeA) antigens (SL-GP) were isolated from ascites fluid from a patient with colorectal cancer by immunoaffinity chromatography. Their characteristics, including binding capacity to E-selectin, were investigated. SL-GP showed a typical mucin type amino acid composition in which Ser, Thr and Pro together accounted for greater than 50% of the total amino acid residues. A large amount of carbohydrate (about 80%) was present in SL-GP. The number of O-glycans carrying SLeA antigens comprised about 9% of the total number of O-glycosidic chains. SL-GP could bind to IL-1 treated HUVEC, and the binding was inhibited by anti-E-selectin and anti-SLeA monoclonal antibodies. The binding of colorectal cancer cells, LS 180, to HUVEC was assayed in the presence of SL-GP, oligosaccharides prepared from SL-GP and human milk SLeA hexasaccharide. SL-GP inhibited the binding most effectively, whereas equivalent amounts of the SL-GP oligosaccharides and milk SLeA hexasaccharide inhibited it only slightly. These results constitute direct evidence that a unique arrangement of SLeA antigens on the polypeptide chain, probably a cluster, is essential for the binding to E-selectin. 相似文献