首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In southern Brazil, mixotrophic dinoflagellates belonging to the Dinophysis acuminata complex have recently been involved in diarrheic shellfish poisoning episodes through the production of lipophilic toxins such as okadaic acid (OA) and dinophysistoxin-1 (DTX-1). The present investigation used a combination of laboratory cultures and field surveys at three large estuarine systems in that region to examine toxin retention in Dinophysis spp. cells under optimum or growth-limiting conditions. This study represents the first successful culture of a Dinophysis isolate from the Atlantic South America region. Starved D. acuminata complex cells reached 5.6-fold higher cellular OA quotas (up to 18 pg cell?1) than Mesodinium rubrum-fed cultures 20 days after inoculation in the laboratory. Moreover, in field samples, light-limited cells at the bottom of a stratified water column were less abundant, yet 6.6- to 11-fold more toxic (up to 26.4 pg OA and 1.7 pg DTX-1 cell?1) than those located at the illuminated surface. This phenomenon of toxin retention by slow-dividing cells may partially explain the enormous variation in cell toxin quota found within Dinophysis spp. populations from a single location, and it may have serious implications for cell count-based monitoring program in bivalve aquaculture areas. In fact, only low to moderate OA levels were detected in the digestive glands of oysters Crassostrea spp. (up to 17.8 ng g?1) and the guts and livers of filter-feeding fish (44.7 ng g?1) during the present study, despite the relatively high Dinophysis cell densities (up to 19,500 cells L?1) found in the field.  相似文献   

2.
《Harmful algae》2010,9(6):873-879
For decades, many aspects of Dinophysis biology have remained intractable due to our inability to maintain these organisms in laboratory cultures. Recent breakthroughs in culture methods have opened the door for detailed investigations of these important algae. Here, for the first time, we demonstrate toxin production in cultures of North American Dinophysis acuminata, isolated from Woods Hole, MA. These findings show that, despite the rarity of Dinophysis-related DSP events in North America, D. acuminata from this area has the ability to produce DSP toxins just as it does in other parts of the world where this species is a major cause of DSP toxicity. In our cultures, D. acuminata cells were observed feeding on Myrionecta rubra using a peduncle. Culture extracts were analyzed using LC–MS/MS, providing unequivocal evidence for the toxin DTX1 in the Dinophysis cultures. In addition, a significant amount of an okadaic acid diol ester, OA-D8, was detected. These results suggest that this Dinophysis isolate stores much of its OA as a diol ester. Also, toxin PTX-2 and a hydroxylated PTX-2 with identical fragmentation mass spectrum to that of PTX-11, but with a different retention time, were detected in this D. acuminata culture. This demonstration of toxin production in cultured North American Dinophysis sets the stage for more detailed studies investigating the causes of geographic differences in toxicity. It is now clear that North American Dinophysis have the ability to produce DSP toxins even though they only rarely cause toxic DSP events in nature. This may reflect environmental conditions that might induce or repress toxin production, genetic differences that cause modifications in toxin gene expression, or physiological and biochemical differences in prey species.  相似文献   

3.
The seasonal distribution of the dinoflagellate genus, Dinophysis, in Maizuru Bay, Japan, was investigated from May 1997 to December 1999. Seven species of Dinophysis were detected, including the toxic species of Dinophysis acuminata and D. fortii. The most dominant species wasD. acuminata, detected year-around and more abundantly during periods when water temperatures were between 15 and 18 °C. No relationship was found between cell abundance of Dinophysis spp. and concentrations of dissolved inorganic nutrients. Phycoerythrin containing nano- and picophytoplankton (cryptophytes and cyanobacteria), suspected to be prey of mixotrophic Dinophysis, were enumerated simultaneously. A clear relationship was not found among the cell abundances of Dinophysis spp. and nano- and picophytoplankton. Autofluorescence of Dinophysis spp. (mainly D. acuminata and D. fortii) under blue-light excitation was usually of a yellow-orange color. Occasionally, Dinophysis spp. had red autofluorescencing and yellow-orange autofluorescencing particles. The proportion of cells possessing red autofluorescence tended to be higher in the warm season. Numerous coccoid cells of picophytoplankton (ca. 1–2 μm in diameter) were found attached to the cell surface of D. acuminata, D. fortii, etc. and food vacuole-like structures also observed. These observations suggest there is a close relationship between mixotrophic Dinophysis spp. and certain picophytoplankton. Based on our observations, the possibility that the picophytoplankton found to be attached onto Dinophysis cell surfaces are a food source for Dinophysis, and a source of DSP toxins, is discussed.  相似文献   

4.
Dinophysis acuminata produces lipophilic shellfish toxins (LSTs) that have economic and ecological impact on marine invertebrates in NE Atlantic where aquaculture farming is prevalent. Identification of D. acuminata can be complex. Cells exhibit a variety of morphotypes that overlap between species making identification using routine light microscopy difficult. These cells are mixotrophic and their population size is influenced by hydrographic conditions and prey populations. Dinophysis cells are able to acquire and temporarily keep prey plastids from a variety of photosynthetic unicellular sources. The Dinophysis community in Scottish waters tend to be dominated by cells with morphologies that appear to be variants of D. acuminata/norvegica complex particularly during late spring/early summer. To determine the identity of these morphotypes, DNA barcoding was performed on 32 single cell isolates from sites around the Scottish coast using the ribosomal internal transcribed spacer 1 (ITS1) and a partial cytochrome oxidase I (COI) fragment on the same single cells. Although the cells exhibited a variety of morphotypes, most were restricted to one cluster containing D. acuminata and three grouped with Dinophysis ovum. This is the first molecular confirmation of the presence of D. ovum in Scottish waters. Two isolates showed considerable divergence – one was unidentifiable from the public databases, whilst the other matched a Dinophysis cf. acuta isolate from Canada. To investigate prey plastids, molecular analysis of these Dinophysis single cells was conducted with a partial fragment of the plastid ribosomal marker (16S). Most cells harboured plastids from the cryptophyte Teleaulax – the most commonly reported plastid type, however one cell harboured a Rhodomonas/Storeatula derived plastid. This finding increases the range and variety of cryptophyte plastids found in Dinophysis and increases the range of prey-types.  相似文献   

5.
Diarrhetic Shellfish Poisoning (DSP) is a globally significant human health syndrome most commonly caused by dinoflagellates within the genus Dinophysis. While blooms of harmful algae have frequently been linked to excessive nutrient loading, Dinophysis is a mixotrophic alga whose growth is typically associated with prey availability. Consequently, field studies of Dinophysis and nutrients have been rare. Here, the temporal dynamics of Dinophysis acuminata blooms, DSP toxins, and nutrients (nitrate, ammonium, phosphate, silicate, organic compounds) were examined over four years within two New York estuaries (Meetinghouse Creek and Northport Bay). Further, changes in the abundance and toxicity of D. acuminata were assessed during a series of nutrient amendment experiments performed over a three year period. During the study, Dinophysis acuminata blooms exceeding one million cells L-1 were observed in both estuaries. Highly significant (p<0.001) forward stepwise multivariate regression models of ecosystem observations demonstrated that D. acuminata abundances were positively dependent on multiple environmental parameters including ammonium (p = 0.007) while cellular toxin content was positively dependent on ammonium (p = 0.002) but negatively dependent on nitrate (p<0.001). Nitrogen- (N) and phosphorus- (P) containing inorganic and organic nutrients significantly enhanced D. acuminata densities in nearly all (13 of 14) experiments performed. Ammonium significantly increased cell densities in 10 of 11 experiments, while glutamine significantly enhanced cellular DSP content in 4 of 5 experiments examining this compound. Nutrients may have directly or indirectly enhanced D. acuminata abundances as densities of this mixotroph during experiments were significantly correlated with multiple members of the planktonic community (phytoflagellates and Mesodinium). Collectively, this study demonstrates that nutrient loading and more specifically N-loading promotes the growth and toxicity of D. acuminata populations in coastal zones.  相似文献   

6.
For decades, many aspects of Dinophysis biology have remained intractable due to our inability to maintain these organisms in laboratory cultures. Recent breakthroughs in culture methods have opened the door for detailed investigations of these important algae. Here, for the first time, we demonstrate toxin production in cultures of North American Dinophysis acuminata, isolated from Woods Hole, MA. These findings show that, despite the rarity of Dinophysis-related DSP events in North America, D. acuminata from this area has the ability to produce DSP toxins just as it does in other parts of the world where this species is a major cause of DSP toxicity. In our cultures, D. acuminata cells were observed feeding on Myrionecta rubra using a peduncle. Culture extracts were analyzed using LC–MS/MS, providing unequivocal evidence for the toxin DTX1 in the Dinophysis cultures. In addition, a significant amount of an okadaic acid diol ester, OA-D8, was detected. These results suggest that this Dinophysis isolate stores much of its OA as a diol ester. Also, toxin PTX-2 and a hydroxylated PTX-2 with identical fragmentation mass spectrum to that of PTX-11, but with a different retention time, were detected in this D. acuminata culture. This demonstration of toxin production in cultured North American Dinophysis sets the stage for more detailed studies investigating the causes of geographic differences in toxicity. It is now clear that North American Dinophysis have the ability to produce DSP toxins even though they only rarely cause toxic DSP events in nature. This may reflect environmental conditions that might induce or repress toxin production, genetic differences that cause modifications in toxin gene expression, or physiological and biochemical differences in prey species.  相似文献   

7.
Due to the increasing prevalence of Dinophysis spp. and their toxins on every US coast in recent years, the need to identify and monitor for problematic Dinophysis populations has become apparent. Here, we present morphological analyses, using light and scanning electron microscopy, and rDNA sequence analysis, using a ~2-kb sequence of ribosomal ITS1, 5.8S, ITS2, and LSU DNA, of Dinophysis collected in mid-Atlantic estuarine and coastal waters from Virginia to New Jersey to better characterize local populations. In addition, we analyzed for diarrhetic shellfish poisoning (DSP) toxins in water and shellfish samples collected during blooms using liquid-chromatography tandem mass spectrometry and an in vitro protein phosphatase inhibition assay and compared this data to a toxin profile generated from a mid-Atlantic Dinophysis culture. Three distinct morphospecies were documented in mid-Atlantic surface waters: D. acuminata, D. norvegica, and a “small Dinophysis sp.” that was morphologically distinct based on multivariate analysis of morphometric data but was genetically consistent with D. acuminata. While mid-Atlantic D. acuminata could not be distinguished from the other species in the D. acuminata-complex (D. ovum from the Gulf of Mexico and D. sacculus from the western Mediterranean Sea) using the molecular markers chosen, it could be distinguished based on morphometrics. Okadaic acid, dinophysistoxin 1, and pectenotoxin 2 were found in filtered water and shellfish samples during Dinophysis blooms in the mid-Atlantic region, as well as in a locally isolated D. acuminata culture. However, DSP toxins exceeded regulatory guidance concentrations only a few times during the study period and only in noncommercial shellfish samples.  相似文献   

8.
Diarrhetic shellfish poisoning (DSP) toxins constitute a severe economic threat to shellfish industries and a major food safety issue for shellfish consumers. The prime producers of the DSP toxins that end up in filter feeding shellfish are species of the marine mixotrophic dinoflagellate genus Dinophysis. Intraspecific toxin contents of Dinophysis spp. vary a lot, but the regulating factors of toxin content are still poorly understood. Dinophysis spp. have been shown to sequester and use chloroplasts from their ciliate prey, and with this rare mode of nutrition, irradiance and food availability could play a key role in the regulation of toxins contents and production. We investigated toxin contents, production and excretion of a Dinophysis acuta culture under different irradiances, food availabilities and growth phases. The newly isolated strain of D. acuta contained okadaic acid (OA), pectenotoxins-2 (PTX-2) and a novel dinophysistoxin (DTX) that we tentatively describe as DTX-1b isomer. We found that all three toxins were excreted to the surrounding seawater, and for OA and DTX-1b as much as 90% could be found in extracellular toxin pools. For PTX-2 somewhat less was excreted, but often >50% was found extracellularly. This was the case both in steady-state exponential growth and in food limited, stationary growth, and we emphasize the need to include extracellular toxins in future studies of DSP toxins. Cellular toxin contents were largely unaffected by irradiance, but toxins accumulated both intra- and extracellularly when starvation reduced growth rates of D. acuta. Toxin production rates were highest during exponential growth, but continued at decreased rates when cell division ceased, indicating that toxin production is not directly associated with ingestion of prey. Finally, we explore the potential of these new discoveries to shed light on the ecological role of DSP toxins.  相似文献   

9.
The entrapment and death of the ciliate Mesodinium rubrum in the mucus threads in cultures with Dinophysis is described and quantified. Feeding experiments with different concentrations and predator–prey ratios of Dinophysis acuta, Dinophysis acuminata and M. rubrum to study the motility loss and aggregate formation of the ciliates and the feeding behaviour of Dinophysis were carried out. In cultures of either Dinophysis species, the ciliates became entrapped in the mucus, which led to the formation of immobile aggregates of M. rubrum and subsequent cell lysis. The proportion of entrapped ciliates was influenced by the concentration of Dinophysis and the ratio of predator and prey in the cultures. At high cell concentrations of prey (136 cells mL−1) and predator (100 cells mL−1), a maximum of 17% of M. rubrum cells became immobile and went through cell lysis. Ciliates were observed trapped in the mucus even when a single D. acuminata cell was present in a 3.4 mL growth medium. Both Dinophysis species were able to detect immobile or partly immobile ciliates at a distance and circled around the prey prior to the capture with a stretched out peduncle. Relatively high entrapment and lysis of M. rubrum cells in the mucus threads indicates that under certain conditions Dinophysis might have a considerable impact on the population of M. rubrum.  相似文献   

10.
The major pectenotoxin and okadaic acid group toxins in Dinophysis acuta and Dinophysis acuminata cell concentrates, collected from various locations around the coast of the South Island of New Zealand (NZ), were determined by liquid chromatography–tandem mass spectrometry (LC–MS/MS). PTX2 and PTX11 were the major polyether toxins in all Dinophysis spp. cell concentrates. D. acuta contained PTX11 and PTX2 at concentrations of 4.7–64.6 and 32.5–107.5 pg per cell, respectively. The amounts of PTX11 and PTX2 in D. acuminata were much lower at 0.4–2.1 and 2.4–25.8 pg per cell, respectively. PTX seco acids comprised only 4% of the total PTX content of both D. acuta and D. acuminata. D. acuta contained low levels of OA (0.8–2.7 pg per cell) but specimens from the South Island west coast also contained up to 10 times higher levels of OA esters (7.0–10.2 pg per cell). Esterified forms of OA were not observed in D. acuta specimens from the Marlborough Sounds. D. acuta did not contain any DTX1 though all D. acuminata specimens contained DTX1 at levels of 0.1–2.4 pg per cell. DTX2 was not present in any New Zealand Dinophysis spp. specimens. Although the total toxin content varied spatially and temporally, the relative proportions of the various toxins in different specimens from the same location appeared to be relatively stable. The total PTX/total OA ratios in different isolates of D. acuta were very similar (mean±S.E.: 14.9±1.9), although the Marlborough Sounds D. acuminata isolates had a higher total PTX/total OA ratio (mean±S.E.: 22.7±2.4) than the Akaroa Harbour isolates (8.0). No evidence of azaspiracids were detected in these specimens. These results show that the LC–MS/MS monitoring of plankton for PTX group toxins (e.g. PTX2) and their derivatives (e.g. PTX2 seco acid) may provide a sensitive, semi-quantitative, indicator of the presence of more cryptic OA group toxins (e.g. OA esters).  相似文献   

11.
Dinophysis spp. produce diarrhetic shellfish poisoning (DSP) toxins and pectenotoxins. The extent to which the dinoflagellate cells retain their toxicity in stationary phase, a period when cells are most toxic, and their transition into cell death is not known. Here we present results on the production, recycling, retention, and release of toxins from a monoculture of Dinophysis acuminata during these two important stages. Once stationary phase was reached, cultures were divided between light and dark treatments to identify if light influenced toxin dynamics. Light was required for long-term cell maintenance (>2 months) of D. acuminata in the absence of prey, however, in the dark, cells in stationary phase survived on reserves alone for four weeks before beginning to decline. Cells maintained relatively constant levels of intracellular OA (0.39 ± 0.03 pg/cell, 0.44 ± 0.05 pg/cell), DTX1 (0.45 ± 0.09 pg/cell, 0.64 ± 0.10 pg/cell) and PTX2 (10.4 ± 1.4 pg/cell, 11.0 ± 1.9 pg/cell) in the dark and light treatments, respectively, throughout stationary phase and into culture decline. Toxin production was only apparent during late exponential and early stationary growth when cells were actively dividing. In general, the concentration of dissolved (extracellular) toxin in the medium significantly increased upon culture aging and decline; cells did not appear to be actively or passively releasing toxin during stationary phase, but rather extracellular release was likely a result of cell death. Light availability did not have an apparent effect on toxin production, quotas, or intracellular vs. extracellular distribution. Together these results suggest that a bloom of D. acuminata would retain its cellular toxicity or potency as long as the population is viable, and that cells under conditions of low light (e.g., at the boundary or below euphotic zone) and/or minimal prey could maintain toxicity for extended periods.  相似文献   

12.
《Harmful algae》2010,9(6):926-937
This work describes and compares the seasonal variability of toxin profiles and content, estimated by LC–MS analyses, in picked cell of Dinophysis acuta Ehrenberg, in plankton concentrates rich in this species, and in extracellular lipophilic toxins collected by adsorbent resins during weekly sampling in a Galician ría (Western Iberia) from October 2005 to January 2006. Picked cells of D. acuta—which exhibited a fairly stable OA:DTX2 ratio, close to 3:2, but a variable okadaates:PTX2 ratio—showed a 9-fold variation in cell toxin quota, which was partly related to cellular volume, with maximum values (19 pg cell−1) observed during the exponential decline of the population. Large differences in toxin profiles and content were observed between picked cells and plankton concentrates (up to 73 pg cell−1 in the latter), that were most conspicuous after the bloom decline. The toxin profile of picked cells was more similar to that observed in the adsorbent resins than to the profiles of plankton concentrates. Their continued detection several weeks after the disappearance of Dinophysis spp. indicates that these toxins may take a long time to be degraded. It is concluded that analyses of picked-cells are essential to determine the contribution of each species of Dinophysis to a toxic outbreak. Estimates of cellular toxin content from plankton concentrates can lead to considerable overestimates after Dinophysis blooms decay due to extracellular toxins that persist in the water column, possibly bound to organic aggregates and detritus, and are retained (>0.22 μm) in the filters.  相似文献   

13.
The production of diarrhetic shellfish poisoning toxins (okadaic acid analogues and other lipophilic toxins) by a culture of Dinophysis acuminata, fed with the autotrophic ciliate Myrionecta rubra, was confirmed by LC–MS analysis, and the toxin profile compared with that in the field assemblage of the same species. The growth response of D. acuminata to the density of the food organism was also examined in laboratory experiments. In semi-continuous culture experiments, the growth rates of D. acuminata increased with increasing density of M. rubra and a maximum growth rate of 0.67 per day was calculated. In batch culture experiments; the cellular content of PTX2 and DTX1 were 14.7–14.8 and 2.5–4.8 pg cell?1, respectively. Okadaic acid, dinophysistoxin-3, pectenotoxin-1, pectenotoxin-6, yessotoxin (YTX) and 45-OHYTX were not detected. PTX2 was detected (cellular toxin content: 22 pg cell?1), but DTX1 was not detected, in an extract of D. acuminata collected from natural seawater at the same location where the cultured D. acuminata specimens were isolated. These results strongly suggest that D. acuminata produces these toxins during cell growth and that environmental factors influence variations in the toxin composition and specific cellular toxicity.  相似文献   

14.
Dinophysis is a cosmopolitan genus of marine dinoflagellates, considered as the major proximal source of diarrheic shellfish toxins and the only producer of pectenotoxins (PTX). From three oceanographic expeditions carried out during autumn, spring and late summer along the Argentine Sea (∼38–56°S), lipophilic phycotoxins were determined by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) in size-fractionated plankton samples. Lipophilic toxin profiles were associated with species composition by microscopic analyses of toxigenic phytoplankton. Pectenotoxin-2 and PTX-11 were frequently found together with the presence of Dinophysis acuminata and Dinophysis tripos. By contrast, okadaic acid was rarely detected and only in trace concentrations, and dinophysistoxins were not found. The clear predominance of PTX over other lipophilic toxins in Dinophysis species from the Argentine Sea is in accordance with previous results obtained from north Patagonian Gulfs of the Argentine Sea, and from coastal waters of New Zealand, Chile, Denmark and United States. Dinophysis caudata was rarely found and it was confined to the north of the sampling area. Because of low cell densities, neither D. caudata nor Dinophysis norvegica could be biogeographically related to lipophilic toxins in this study. Nevertheless, the current identification of D. norvegica in the southern Argentine Sea is the first record for the southwestern Atlantic Ocean. Given the typical toxigenicity of this species on a global scale, this represents an important finding for future surveillance of plankton-toxin associations.  相似文献   

15.
Fluctuations of the genus Dinophysis, which contained several toxic species of diarrhetic shellfish poisoning (DSP), were investigated during blooms in Hiroshima Bay, Mutsu Bay and Ise Bay, Japan. The co-occurrences of small phytoplanktons (cryptophytes, other nanophytoplanktons, cyanobacteria and eukaryotic picophytoplanktons) were investigated to search for relationships with mixotrophic Dinophysis. Cryptophytes were divided into three size-groups based on length of their chloroplasts (>10, 5–10 and <5 μm) during counting by epifluorescence microscopy. Clear relationships were not found between the occurrences of Dinophysis spp. and nanophytoplanktons, cyanobacteria and eukaryotic picophytoplanktons. However, the fluctuations of small-sized cryptophytes (<5 μm) showed a close relationship with that of D. acuminata in Hiroshima Bay. In Mutsu Bay, small-sized cryptophytes also accompanied the first occurrence peak of Dinophysis spp. In Ise Bay, peaks of the occurrences of middle- and small-sized cryptophytes were observed 2–3 weeks before the peak of D. acuminata. These cryptophytes decreased rapidly with increase in D. acuminata. These results suggest the possibility that small-sized cryptophytes may be food organisms for mixotrophic Dinophysis, with the abundance of Dinophysis dependent on these cryptophytes.  相似文献   

16.
17.
The variability of toxigenic phytoplankton and the consequent uptake and loss of toxins by the mussel Choromytilus meridionalis was investigated in the southern Benguela at the event scale (3–10 days) in response to the upwelling–downwelling cycle. Phytoplankton and mussel samples were collected daily (20 March–11 April 2007) from a mooring station (32.04°S; 18.26°E) located 3.5 km offshore of Lambert's Bay, within the St Helena Bay region. Rapid changes in phytoplankton assemblages incorporated three groups of toxigenic phytoplankton: (1) the dinoflagellate Alexandrium catenella; (2) several species of Dinophysis, including Dinophysis acuminata, Dinophysis fortii, Dinophysis hastata and Dinophysis rotundata; and (3) members of the diatom genus Pseudo-nitzschia. Analysis of phytoplankton concentrates by LC–MS/MS or LC-FD provided information on the toxin composition and calculated toxicity of each group. Several additional in vitro assays were used for the analysis of toxins in mussels (ELISA, RBA, MBA for PSP toxins; and ELISA for DSP toxins). Good correspondence was observed between methods except for the MBA, which provided significantly lower (approximately 2-fold) estimates of PSP toxins. PSP and DSP toxins both exceeded the regulatory limits in Choromytilis meridionalis, but ASP toxins were undetected. Differences were observed in the composition of both PSP and DSP toxins in C. meridionalis from that of the ingested dinoflagellates (PSP toxins showed an increase in STX, C1,2, and traces of dcSTX and GTX1,4 and a decrease in NEO; DSP toxins showed an increased in DTX1, and traces of PTX2sa, and a decrease in OA). The rate of loss of PSP toxins following dispersal of the A. catenella boom was 0.12 d−1. Variation in the loss rates of different PSP toxins contributed to the change in toxin profile in C. meridionalis. Prediction of net toxicity in shellfish of the nearshore environment in the southern Benguela is limited due to rapid phytoplankton community changes, high variability in cellular toxicity, and the selective uptake and loss of toxins, and/or transformation of toxins.  相似文献   

18.
Toxigenic Dinophysis spp. are obligate mixotrophic dinoflagellates that require a constant supply of prey—Mesodinium rubrum—to achieve long-term growth by means of kleptoplasty. Mesodinium rubrum is, however, a fast moving, jumping ciliate exhibiting an effective escape response from suspensivorous predators. In the present study, a series of laboratory experiments evaluating the motility and survival of M. rubrum in the presence of Dinophysis cells and/or substances contained in their culture medium was designed, in order to assess the mechanisms involved in prey capture by Dinophysis spp. Cell abundance of M. rubrum decreased in the presence of Dinophysis cf. ovum cells producing okadaic acid (OA; up to 7.94 ± 2.67 pg cell−1) and smaller amounts of dinophysistoxin-1 (DTX-1) and pectenotoxin-2 (PTX-2). Prey capture was often observed after the ciliate had been attached to adhesive “mucus traps”, which only appeared in the presence of Dinophysis cells. Before being attached to the mucus traps, M. rubrum cells reduced significantly their swimming frequency (from ∼41 to 19 ± 3 jumps min−1) after only 4 h of initial contact with D. cf. ovum cells. M. rubrum survival was not affected in contact with purified OA, DTX-1 and PTX-2 solutions, but decreased significantly when the ciliate was exposed to cell-free or filtered culture medium from both D. cf. ovum and D. caudata, the latter containing moderate concentrations of free eicosapentaenoic acid and docosahexaenoic acid. The results thus indicate that Dinophysis combines the release of toxic compounds other than shellfish toxins, possibly free PUFAs, and a “mucus trap” to enhance its prey capture success by immobilizing and subsequently arresting M. rubrum cells.  相似文献   

19.
The dynamics of Dinophysis acuminata and its associated diarrhetic shellfish poisoning (DSP) toxins, okadaic acid (OA) and dinophysistoxin-1 (DTX1) as well as pectenotoxins (PTXs), were investigated within plankton and shellfish in Northport Bay, NY, USA, over a four year period (2008–2011). Over the course of the study, Dinophysis bloom densities ranged from ~104 to 106 cells L−1 and exceeded 106 L−1 in 2011 when levels of total OA, total DTX1, and PTX in the water column were 188, 86, and 2900 pg mL−1, respectively, with the majority of the DSP toxins present as esters. These cell densities exceed – by two orders of magnitude – those previously reported within thousands of samples collected from NY waters from 1971 to 1986. The bloom species was positively identified as D. acuminata via scanning electron microscopy and genetic sequencing (cox1 gene). The cox1 gene sequence from the D. acuminata populations in Northport Bay was 100% identical to D. acuminata from Narragansett Bay, RI, USA and formed a strongly supported phylogenetic cluster (posterior probability = 1) that included D. acuminata and Dinophysis ovum from systems along the North Atlantic Ocean. Shellfish collected from Northport Bay during the 2011 bloom had DSP toxin levels (1245 ng g−1 total OA congeners) far exceeding the USFDA action level (160 ng g−1 total OA of shellfish tissue) representing the first such occurrence on the East Coast of the U.S. D. acuminata blooms co-occurred with paralytic shellfish poisoning (PSP) causing blooms of Alexandrium fundyense during late spring each year of the study. D. acuminata cell abundances were significantly correlated with levels of total phytoplankton biomass and Mesodinium spp., suggesting food web interactions may influence the dynamics of these blooms. Given that little is known regarding the combined effects of DSP and PSP toxins on human health and the concurrent accumulation and depuration of these toxins in shellfish, these blooms represent a novel managerial challenge.  相似文献   

20.
Dinoflagellate species of Dinophysis, in particular D. acuminata and D. acuta, produce lipophilic toxins that pose a threat to human health when concentrated in shellfish and jeopardize shellfish exploitations in western Europe. In northwestern Iberia, D. acuminata has a long growing season, from spring to early autumn, and populations develop as soon as shallow stratification forms when the upwelling season begins. In contrast, D. acuta blooms in late summer, when the depth of the pycnocline is maximal and upwelling pulses are moderate. In situ observations on the hydrodynamic regimes during the two windows of opportunity for Dinophysis species led us to hypothesize that D. acuta should be more sensitive to turbulence than D. acuminata.To test this hypothesis, we studied the response of D. acuminata and D. acuta to three realistic turbulence levels low (LT), ε ≈ 10−6 m2 s-3; medium (MT), ε ≈ 10-5 m2 s-3 and high (HT), ε ≈ 10-4 m2 s-3 generated by Turbogen, a highly reproducible, computer-controlled system. Cells of both species exposed to LT and MT grew at rates similar to the controls. Marked differences were found in the response to HT: D. acuminata grew slowly after an initial lag phase, whereas D. acuta cell numbers declined. Results from this study support the hypothesis that turbulence may play a role in shaping the spatio-temporal distribution of individual species of Dinophysis. We also hypothesize that, in addition to cell disturbance affecting division, sustained high shear generated by microturbulence may cause a decline in Dinophysis numbers due to decreased densities of ciliate prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号