首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA的胞嘧啶(C)5-甲基化是一种重要的表观修饰,它参与基因调节、基因组印记、X-染色体失活、重复序列抑制和癌症发生等过程. 5-甲基胞嘧啶(5mC)可被TET (ten-eleven translocation)蛋白家族进一步转化为5-羟甲基胞嘧啶(5hmC),该过程是DNA去甲基化的1个必要阶段. 5hmC可在活性转录基因起始位点和Polycomb抑制基因启动子延伸区域富集.TET蛋白包括3个成员TET1、TET2和TET3,均属于α-酮戊二酸和Fe2+依赖的双加氧酶,其催化涉及氧化过程.小鼠Tet1在胚胎干细胞发育中拥有双重作用,即促进全能因子的转录,又参与发育调节因子的抑制.人TET蛋白的破坏与造血系统肿瘤相关,如在骨髓增生性疾病/肿瘤存在频繁的TET2基因突变.TET蛋白和5hmC的研究为DNA甲基化/去甲基化及其生物学功能提供了新的视点.  相似文献   

2.
TET(ten-eleven translocation)蛋白属于酮戊二酸和Fe2+依赖的双加氧酶,能够产生催化氧化作用。在TET蛋白家族的催化氧化作用下5-甲基胞嘧啶(5-methylcytosine,5mC)可转化为5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hmC),并可进一步转化为5-甲酰胞嘧啶(5-formylcytosine,5fC)和5-羧基胞嘧啶(5-carboxylcytosine,5caC)。TET蛋白在DNA胞嘧啶的去甲基化、胚胎发育和基因重新编码等过程都存在重要作用,其中TET蛋白参与DNA胞嘧啶的去甲基化过程的作用机制一直是研究热点,另外,有研究发现TET与肿瘤的发生也存在联系,可能成为新的肿瘤分子标志。  相似文献   

3.
Oxidation of 5-methylcytosine (5mC) is catalyzed by ten-eleven translocation (TET) enzymes to produce 5-hydroxymethylcytosine (5hmC) and following oxidative products. The oxidized nucleotides were shown to be the intermediates for DNA demethylation, as the nucleotides are removed by base excision repair system initiated by thymine DNA glycosylase. A simple and accurate method to determine initial oxidation product 5hmC at single base resolution in genomic DNA is necessary to understand demethylation mechanism. Recently, we have developed a new catalytic oxidation reaction using micelle-incarcerated oxidants to oxidize 5hmC to form 5-formylcytosine (5fC), and subsequent bisulfite sequencing can determine the positions of 5hmC in DNA. In the present study, we described the optimization of the catalytic oxidative bisulfite sequencing (coBS-seq), and its application to the analysis of 5hmC in genomic DNA at single base resolution in a quantitative manner. As the oxidation step showed quite low damage on genomic DNA, the method allows us to down scale the sample to be analyzed.  相似文献   

4.
An efficient, accurate, and timely DNA damage response (DDR) is crucial for the maintenance of genome integrity. Here, we report that ten‐eleven translocation dioxygenase (TET) 3‐mediated conversion of 5‐methylcytosine (5mC) to 5‐hydroxymethylcytosine (5hmC) in response to ATR‐dependent DDR regulates DNA repair. ATR‐dependent DDR leads to dynamic changes in 5hmC levels and TET3 enzymatic activity. We show that TET3 is an ATR kinase target that oxidizes DNA during ATR‐dependent DNA damage repair. Modulation of TET3 expression and activity affects DNA damage signaling and DNA repair and consequently cell death. Our results provide novel insight into ATR‐mediated DDR, in which TET3‐mediated DNA demethylation is crucial for efficient DNA repair and maintenance of genome stability.  相似文献   

5.
6.
7.
Active DNA demethylation performed by ten-eleven translocation (TET) enzymes produces 5-hydroxymethylcytosines, 5-formylcytosines, and 5-carboxylcytosines. Recent observations suggest that 5-hydroxymethylcytosine is a stable epigenetic mark rather than merely an intermediate of DNA demethylation. However, the clear functional role of this new epigenetic player is elusive. The contribution of 5-hydroxymethylation to DNA repair is being discussed currently. Recently, Jiang and colleagues have demonstrated that DNA damage response-activated ATR kinase phosphorylates TET3 in mammalian cells and promotes DNA demethylation and 5-hydroxymethylcytosine accumulation. Moreover, TET3 catalytic activity is important for proper DNA repair and cell survival. Here, we discuss recent studies on the potential role of 5-hydroxymethylation in DNA repair and genome integrity maintenance.  相似文献   

8.
The family of Ten-Eleven Translocation (TET) proteins is implicated in the process of active DNA demethylation and thus in epigenetic regulation. TET 1, 2 and 3 proteins are oxygenases that can hydroxylate 5-methylcytosine (5-mC) into 5-hydroxymethylcytosine (5-hmC) and further oxidize 5-hmC into 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC). The base excision repair (BER) pathway removes the resulting 5-fC and 5-caC bases paired with a guanine and replaces them with regular cytosine. The question arises whether active modification of 5-mC residues and their subsequent elimination could affect the genomic DNA stability. Here, we generated two inducible cell lines (Ba/F3-EPOR, and UT7) overexpressing wild-type or catalytically inactive human TET2 proteins. Wild-type TET2 induction resulted in an increased level of 5-hmC and a cell cycle defect in S phase associated with higher level of phosphorylated P53, chromosomal and centrosomal abnormalities. Furthermore, in a thymine-DNA glycosylase (Tdg) deficient context, the TET2-mediated increase of 5-hmC induces mutagenesis characterized by GC > AT transitions in CpG context suggesting a mutagenic potential of 5-hmC metabolites. Altogether, these data suggest that TET2 activity and the levels of 5-hmC and its derivatives should be tightly controlled to avoid genetic and chromosomal instabilities. Moreover, TET2-mediated active demethylation might be a very dangerous process if used to entirely demethylate the genome and might rather be used only at specific loci.  相似文献   

9.
Cytosine methylation is the major epigenetic modification of metazoan DNA. Although there is strong evidence that active DNA demethylation occurs in animal cells, the molecular details of this process are unknown. The recent discovery of the TET protein family (TET1–3) 5-methylcytosine hydroxylases has provided a new entry point to reveal the identity of the long-sought DNA demethylase. Here, we review the recent progress in understanding the function of TET proteins and 5-hydroxymethylcytosine (5hmC) through various biochemical and genomic approaches, the current evidence for a role of 5hmC as an early intermediate in active DNA demethylation and the potential functions of TET proteins and 5hmC beyond active DNA demethylation. We also discuss how future studies can extend our knowledge of this novel epigenetic modification.  相似文献   

10.

Background

Cytosine methylation is a frequent epigenetic modification restricting the activity of gene regulatory elements. Whereas DNA methylation patterns are generally inherited during replication, both embryonic and somatic differentiation processes require the removal of cytosine methylation at specific gene loci to activate lineage-restricted elements. However, the exact mechanisms facilitating the erasure of DNA methylation remain unclear in many cases.

Results

We previously established human post-proliferative monocytes as a model to study active DNA demethylation. We now show, for several previously identified genomic sites, that the loss of DNA methylation during the differentiation of primary, post-proliferative human monocytes into dendritic cells is preceded by the local appearance of 5-hydroxymethylcytosine. Monocytes were found to express the methylcytosine dioxygenase Ten-Eleven Translocation (TET) 2, which is frequently mutated in myeloid malignancies. The siRNA-mediated knockdown of this enzyme in primary monocytes prevented active DNA demethylation, suggesting that TET2 is essential for the proper execution of this process in human monocytes.

Conclusions

The work described here provides definite evidence that TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine initiates targeted, active DNA demethylation in a mature postmitotic myeloid cell type.  相似文献   

11.
Cytosine methylation is the major epigenetic modification of metazoan DNA. Although there is strong evidence that active DNA demethylation occurs in animal cells, the molecular details of this process are unknown. The recent discovery of the TET protein family (TET1–3) 5-methylcytosine hydroxylases has provided a new entry point to reveal the identity of the long-sought DNA demethylase. Here, we review the recent progress in understanding the function of TET proteins and 5-hydroxymethylcytosine (5hmC) through various biochemical and genomic approaches, the current evidence for a role of 5hmC as an early intermediate in active DNA demethylation and the potential functions of TET proteins and 5hmC beyond active DNA demethylation. We also discuss how future studies can extend our knowledge of this novel epigenetic modification.Key words: TET1, 5-hydroxymethylcytosine, active DNA demethylation, epigenetic, DNA methylation, hippocampus, electroconvulsive stimulation, Gadd45b, BER  相似文献   

12.
The ten-eleven translocation (TET) family of dioxygenases (TET1/2/3) converts 5-methylcytosine to 5-hydroxymethylcytosine and provides a vital mechanism for DNA demethylation. However, how TET proteins are regulated is largely unknown. Here we report that the O-linked β-GlcNAc (O-GlcNAc) transferase (OGT) is not only a major TET3-interacting protein but also regulates TET3 subcellular localization and enzymatic activity. OGT catalyzes the O-GlcNAcylation of TET3, promotes TET3 nuclear export, and, consequently, inhibits the formation of 5-hydroxymethylcytosine catalyzed by TET3. Although TET1 and TET2 also interact with and can be O-GlcNAcylated by OGT, neither their subcellular localization nor their enzymatic activity are affected by OGT. Furthermore, we show that the nuclear localization and O-GlcNAcylation of TET3 are regulated by glucose metabolism. Our study reveals the differential regulation of TET family proteins by OGT and a novel link between glucose metabolism and DNA epigenetic modification.  相似文献   

13.
The DNA methylation program in vertebrates is an essential part of the epigenetic regulatory cascade of development, cell differentiation, and progression of diseases including cancer. While the DNA methyltransferases (DNMTs) are responsible for the in vivo conversion of cytosine (C) to methylated cytosine (5mC), demethylation of 5mC on cellular DNA could be accomplished by the combined action of the ten-eleven translocation (TET) enzymes and DNA repair. Surprisingly, the mammalian DNMTs also possess active DNA demethylation activity in vitro in a Ca2+- and redox conditions-dependent manner, although little is known about its molecular mechanisms and occurrence in a cellular context. In this study, we have used LC-MS/MS to track down the fate of the methyl group removed from 5mC on DNA by mouse DNMT3B in vitro and found that it becomes covalently linked to the DNA methylation catalytic cysteine of the enzyme. We also show that Ca2+ homeostasis-dependent but TET1/TET2/TET3/TDG-independent demethylation of methylated episomal DNA by mouse DNMT3A or DNMT3B can occur in transfected human HEK 293 and mouse embryonic stem (ES) cells. Based on these results, we present a tentative working model of Ca2+ and redox conditions-dependent active DNA demethylation by DNMTs. Our study substantiates the potential roles of the vertebrate DNMTs as double-edged swords in DNA methylation-demethylation during Ca2+-dependent physiological processes.  相似文献   

14.
15.
16.
Oxidation of 5-methylcytosine by TET family proteins can induce DNA replication-dependent (passive) DNA demethylation and base excision repair (BER)-based (active) DNA demethylation. The balance of active vs. passive TET-induced demethylation remains incompletely determined. In the context of large scale DNA demethylation, active demethylation may require massive induction of the DNA repair machinery and thus compromise genome stability. To study this issue, we constructed a tetracycline-controlled TET-induced global DNA demethylation system in HEK293T cells. Upon TET overexpression, we observed induction of DNA damage and activation of a DNA damage response; however, BER genes are not upregulated to promote DNA repair. Depletion of TDG (thymine DNA glycosylase) or APEX1 (apurinic/apyrimidinic endonuclease 1), two key BER enzymes, enhances rather than impairs global DNA demethylation, which can be explained by stimulated proliferation. By contrast, growth arrest dramatically blocks TET-induced global DNA demethylation. Thus, in the context of TET-induction in HEK293T cells, the DNA replication-dependent passive mechanism functions as the predominant pathway for global DNA demethylation. In the same context, BER-based active demethylation is markedly restricted by limited BER upregulation, thus potentially preventing a disastrous DNA damage response to extensive active DNA demethylation.  相似文献   

17.
Multiple studies have indicated that the TET oxidases and, more controversially, the activation-induced cytidine deaminase/APOBEC deaminases have the capacity to convert genomic DNA 5-methylcytosine (MeC) into altered nucleobases that provoke excision repair and culminate in the replacement of the original MeC with a normal cytosine (C). We show that human APOBEC3A (A3A) efficiently deaminates both MeC to thymine (T) and normal C to uracil (U) in single-stranded DNA substrates. In comparison, the related enzyme APOBEC3G (A3G) has undetectable MeC to T activity and 10-fold less C to U activity. Upon 100-fold induction of endogenous A3A by interferon, the MeC status of bulk chromosomal DNA is unaltered, whereas both MeC and C nucleobases in transfected plasmid DNA substrates are highly susceptible to editing. Knockdown experiments show that endogenous A3A is the source of both of these cellular DNA deaminase activities. This is the first evidence for nonchromosomal DNA MeC to T editing in human cells. These biochemical and cellular data combine to suggest a model in which the expanded substrate versatility of A3A may be an evolutionary adaptation that occurred to fortify its innate immune function in foreign DNA clearance by myeloid lineage cell types.  相似文献   

18.
19.
DNA methylation is a well-characterized epigenetic modification that plays central roles in mammalian development, genomic imprinting, X-chromosome inactivation and silencing of retrotransposon elements. Aberrant DNA methylation pattern is a characteristic feature of cancers and associated with abnormal expression of oncogenes, tumor suppressor genes or repair genes. Ten-eleven-translocation (TET) proteins are recently characterized dioxygenases that catalyze progressive oxidation of 5-methylcytosine to produce 5-hydroxymethylcytosine and further oxidized derivatives. These oxidized methylcytosines not only potentiate DNA demethylation but also behave as independent epigenetic modifications per se. The expression or activity of TET proteins and DNA hydroxymethylation are highly dysregulated in a wide range of cancers including hematologic and non-hematologic malignancies, and accumulating evidence points TET proteins as a novel tumor suppressor in cancers. Here we review DNA demethylation-dependent and -independent functions of TET proteins. We also describe diverse TET loss-of-function mutations that are recurrently found in myeloid and lymphoid malignancies and their potential roles in hematopoietic transformation. We discuss consequences of the deficiency of individual Tet genes and potential compensation between different Tet members in mice. Possible mechanisms underlying facilitated oncogenic transformation of TET-deficient hematopoietic cells are also described. Lastly, we address non-mutational mechanisms that lead to suppression or inactivation of TET proteins in cancers. Strategies to restore normal 5mC oxidation status in cancers by targeting TET proteins may provide new avenues to expedite the development of promising anti-cancer agents.  相似文献   

20.
Insights on active DNA demethylation disproved the original assumption that DNA methylation is a stable epigenetic modification. Interestingly, mammalian DNA methyltransferases 3A and 3B (DNMT-3A and -3B) have also been reported to induce active DNA demethylation, in addition to their well-known function in catalyzing methylation. In situations of extremely low levels of S-adenosyl methionine (SAM), DNMT-3A and -3B might demethylate C-5 methyl cytosine (5mC) via deamination to thymine, which is subsequently replaced by an unmodified cytosine through the base excision repair (BER) pathway. Alternatively, 5mC when converted to 5- hydroxymethylcytosine (5hmC) by TET enzymes, might be further modified to an unmodified cytosine by DNMT-3A and -3B under oxidized redox conditions, although exact pathways are yet to be elucidated. Interestingly, even direct conversion of 5mC to cytosine might be catalyzed by DNMTs. Here, we summarize the evidence on the DNA dehydroxymethylase and demethylase activity of DNMT-3A and -3B. Although physiological relevance needs to be demonstrated, the current indications on the 5mC- and 5hmC-modifying activities of de novo DNA C-5 methyltransferases shed a new light on these enzymes. Despite the extreme circumstances required for such unexpected reactions to occur, we here put forward that the chromatin microenvironment can be locally exposed to extreme conditions, and hypothesize that such waves of extremes allow enzymes to act in differential ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号