首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Induction of parallel human telomeric G-quadruplex structures by Sr(2+)   总被引:1,自引:0,他引:1  
Human telomeric DNA forms G-quadruplex secondary structures, which can inhibit telomerase activity and are targets for anti-cancer drugs. Here we show that Sr(2+) can induce human telomeric DNA to form both inter- and intramolecular structures having characteristics consistent with G-quadruplexes. Unlike Na(+) or K(+), Sr(2+) facilitated intermolecular structure formation for oligonucleotides with 2 to 5 5'-d(TTAGGG)-3' repeats. Longer 5'-d(TTAGGG)-3' oligonucleotides formed exclusively intramolecular structures. Altering the 5'-d(TTAGGG)-3' to 5'-d(TTAGAG)-3' in the 1st, 3rd, or 4th repeats of 5'-d(TTAGGG)(4)-3' stabilized the formation of intermolecular structures. However, a more compact, intramolecular structure was still observed when the 2nd repeat was altered. Circular dichroism spectroscopy results suggest that the structures were parallel-stranded, distinguishing them from similar DNA sequences in Na(+) and K(+). This study shows that Sr(2+), promotes parallel-stranded, inter- and intramolecular G-quadruplexes that can serve as models to study DNA substrate recognition by telomerase.  相似文献   

2.
How the cellular amount of mitochondrial DNA (mtDNA) is regulated under normal conditions and in the presence of genotoxic stress is less understood. We demonstrate that the inefficient mtDNA replication process of mutant yeast cells lacking the PIF1 DNA helicase is partly rescued in the absence of the DNA helicase RRM3. The rescue effect is likely due to the increase in the deoxynucleoside triphosphates (dNTPs) pool caused by the lack of RRM3. In contrast, the Pif1p-dependent mtDNA breakage in the presence and absence of genotoxic stress is not suppressed if RRM3 is lacking suggesting that this phenotype is likely independent of the dNTP pool. Pif1 protein (Pif1p) was found to stimulate the incorporation of dNTPs into newly synthesised mtDNA of gradient-purified mitochondria. We propose that Pif1p that acts likely as a DNA helicase in mitochondria affects mtDNA replication directly. Possible roles of Pif1p include the resolution of secondary DNA and/or DNA/RNA structures, the temporarily displacement of tightly bound mtDNA-binding proteins, or the stabilization of the mitochondrial replication complex during mtDNA replication. X. Cheng, Y. Qin contributed equally to this work.  相似文献   

3.
4.
To investigate the nature of viremia during the acute phase of varicella, we studied the viral load in nine otherwise healthy children with varicella. Plasma and peripheral blood mononuclear cells (PBMC) were obtained, then PBMC were divided into CD4+T, CD8+T, and B lymphocytes and monocyte/macrophage fractions. The viral DNA in each component was quantified using a real-time quantitative polymerase chain reaction assay. Varicella-zoster virus (VZV) DNA was detected in plasma, PBMC and all subpopulations. The amount of viral DNA was similar in each PBMC subpopulation, suggesting that each lymphocyte fraction and monocytes carry similar amounts of VZV DNA during viremia.  相似文献   

5.
Porcine circovirus is the only mammalian DNA virus so far known to contain a single-stranded circular genome (Tischer et al. (1982) Nature 295, 64–66). Replication of its small viral DNA (1.76 kb) appears to be dependent on cellular enzymes expressed during S-phase of the cell cycle (Tischer et al. (1987) Arch. Virol. 96, 39–57). In this paper we have exploited the porcine circovirus genome to probe for in vitro initiation and elongation of DNA replication by different preparations of calf thymus DNA polymerase α and δ as well as by a partially purified preparation from pig thymus. The results indicated that three different purification fractions of calf thymus DNA polymerase α and one from pig thymus initiate DNA synthesis at several sites on the porcine circovirus DNA. It appears that the sites at which DNA primase synthesizes primers are not entirely random. Subsequent DNA elongation by a highly purified DNA polymerase α holoenzyme which had been isolated by the criterion of replicating single-stranded M13 DNA (Ottiger et al. (1987) Nucleic Acids Res. 15, 4789–4807) is very efficient. Complete conversion to the double-stranded form is obtained in less than 1 min. When the DNA synthesis by DNA polymerase α is blocked with the DNA polymerase α specific monoclonal antibody SJK 132-20 after initiation by DNA primase, DNA polymerase δ can efficiently replicate from the primers. This in vitro DNA replication system may be used in analogy to the bacteriophage systems in E. coli to study initiation and elongation of DNA replication.  相似文献   

6.
We present an application of image analysis for the direct quantification of PCR products after gel electrophoresis and ethidium bromide staining of DNA. This procedure has been applied to the development of an assay based on competitive PCR for the measurement of the degree of amplification of c-erbB-2 oncogene in DNA from human tumours. In this method two DNA species (genomic and competitor) compete for PCR amplification. Since results are calculated from the final competitor/genomic ratio any variable affecting the rate of PCR amplification has no effect on the accuracy of the ratio measurement. Results are reported which show that even large variations in the experimental conditions (number of PCR cycles, sample volumes and extracted DNA quality) did not interfere with the precision of the measurement of the competitor/genomic ratio.  相似文献   

7.
A human cruciform binding protein (CBP) was previously shown to bind to cruciform DNA in a structure-specific manner and be a member of the 14-3-3 protein family. CBP had been found to contain the 14-3-3 isoforms beta, gamma, epsilon, and zeta. Here, we show by Western blot analysis that the CBP-cruciform DNA complex eluted from band-shift polyacrylamide gels also contains the 14-3-3sigma isoform, which is present in HeLa cell nuclear extracts. An antibody specific for the 14-3-3sigma isoform was able to interfere with the formation of the CBP-cruciform DNA complex. The effect of the same anti-14-3-3sigma antibody in the in vitro replication of p186, a plasmid containing the minimal replication origin of the monkey origin ors8, was also analyzed. Pre-incubation of total HeLa cell extracts with this antibody decreased p186 in vitro replication to approximately 30% of control levels, while non-specific antibodies had no effect. 14-3-3sigma was found to associate in vivo with the monkey origins of DNA replication ors8 and ors12 in a cell cycle-dependent manner, as assayed by a chromatin immunoprecipitation (ChIP) assay that involved formaldehyde cross-linking, followed by immunoprecipitation with anti-14-3-3sigma antibody and quantitative PCR. The association of 14-3-3sigma with the replication origins was maximal at the G(1)/S phase. The results indicate that 14-3-3sigma is an origin binding protein involved in the regulation of DNA replication via cruciform DNA binding.  相似文献   

8.
The 18S ribosomal DNAs ofCordyceps spp. were amplified for the first time by the PCR method. New primers were designed based on the sequence of the 18S ribosomal DNA ofSclerotinia sclerotiorum.  相似文献   

9.
Impact of ultraviolet-B radiation in causing the damages to the DNA of the cyanobacterium, Anabaena strain BT2 has been investigated. Exposure of genomic DNA (in vitro) to UV-B radiation for 1 h did not cause any shift in the absorption peak (lambda(max)) but more than 30% increase in absorbance was noticed in comparison to untreated control DNA (no exposure to UV-B). This increase in absorbance in a way may be comparable to typical hypochromic effect but there was no decrease in absorbance following transfer of UV-B-treated DNA to fluorescent light or in the dark. That the damaging effect of UV-B radiation on native structure of DNA is indeed real was also evident from the PCR-based assay such as RAPD, rDNA amplification, and ARDRA. Template activity of UV-B-treated genomic DNA was drastically inhibited, there was no amplification in RAPD assay after prior exposure of DNA to UV-B for 60 min. Only one band of approximately 400 bp was observed even after 60 min of exposure which suggests that certain segment of DNA strand is resistant to UV-B effects. Similar to the effects on RAPD profile, amplification of rDNA was significantly inhibited following exposure of genomic DNA to UV-B. Our findings clearly demonstrate that UV-B does affect the DNA of cyanobacteria and the killings of these microbes might be due to the irreversible damages caused to DNA by this high energy radiation. It is felt that PCR assay may be conveniently used for screening the damages caused to DNA by UV-B radiation in cyanobacteria and other microorganisms.  相似文献   

10.
The ribosomal internal transcribed spacer 1 region was sequenced for 10 species of Pythium and eight species of Phytophthora. Alignment of the sequences revealed considerable sequence microheterogeneity, which was utilized to prepare a capture probe of unique sequence for each species. The capture probes were tested by PCR ELISA, combining the sensitivity and specificity of the polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). The probes were entirely species specific, enabling the detection and identification of the amplified DNA of species from individual cultures or from mixed samples of the DNAs of two different species. This approach to species identification, which provides a molecular technology to process large numbers of samples and still identify the fungi with a high level of confidence, may greatly reduce the resources and the time of highly trained specialists currently needed to identify these important species of plant pathogenic fungi.  相似文献   

11.
We investigated the association of DNA polymerase and DNA primase activity with the nuclear matrix in HeLa S3 cells diluted with fresh medium after having been cultured without any medium change for 7 days. Flow cytometric analysis demonstrated that just before dilution about 85% of the cells were in the G1 phase of the cycle, whereas 8% were in the S phase. After dilution with fresh medium, 18–22 h were required for the cell population to attain a stable distribution with respect to the cell cycle. At that time, about 38% of the cells were in the S phase. DNA polymerase and DNA primase activity associated with the nuclear matrix prepared from cells just before dilution represented about 10% of nuclear activity. As judged by [3H]-thymidine incorporation and flow cytometric analysis, an increase in the number of S-phase cells was evident at least 6 h after dilution. However, as early as 2 h after dilution into fresh medium, a striking prereplicative increase of the two activitites was seen in the nuclear matrix fraction but not in cytosol or isolated nuclei. Both DNA polymerase and primase activities bound to the matrix were about 60% of nuclear activity. Overall, the nuclear matrix was the cell fraction where the highest induction (about 10-fold) of both enzymatic activities was seen at 30 h after dilution, whereas in cytosol and isolated nuclei the increase was about two- and fourfold, respectively. Typical immunofluorescent patterns given by an antibody to 5-bromodeoxyuridine were seen after dilution. These findings, which are at variance with our own previous results obtained with cell cultures synchronized by either a double thymidine block or aphidicolin exposure, strengthen the contention that DNA replication is associated with an underlying nuclear structure and demonstrate the artifacts that may be generated by procedures commonly used to synchronize cell cultures. J. Cell. Biochem. 71:11–20, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
In many organisms, attenuation of growth signaling by caloric restriction or mutational inactivation of growth signaling pathways extends lifespan and protects against cancer and other age-related diseases. The focus of many efforts to understand these effects has been on the induction of oxidative stress defenses that inhibit cellular senescence and cell death. Here we show that in the model organism S. cerevisiae, growth signaling induces entry of cells in stationary phase into S phase in parallel with loss of reproductive capacity, which is enhanced by elevated concentrations of glucose. Overexpression of RNR1 encoding a ribonucleotide reductase subunit required for the synthesis of deoxynucleotide triphosphates and DNA replication suppresses the accelerated loss of reproductive capacity of cells cultured in high glucose. The reduced reproductive capacity of these cells is also suppressed by excess threonine, which buffers dNTP pools when ribonucleotide reductase activity is limiting. Caloric restriction or inactivation of the AKT homolog Sch9p inhibits senescence and death in stationary phase cells caused by the DNA replication inhibitor hydroxyurea or by inactivation of the DNA replication and repair proteins Sgs1p or Rad27p. Inhibition of DNA replication stress represents a novel mechanism by which caloric restriction promotes longevity in S. cerevisiae. A similar mechanism may promote longevity and inhibit cancer and other age-related diseases in humans.  相似文献   

13.
Using a sensitive and rapid method combining broad-range PCR amplification of bacterial 16S rDNA fragments and pyrosequencing for detection, identification and typing, we have found contaminating bacterial DNA in our reagents used for PCR. Identified bacteria are the water-borne bacterial genera Pseudomonas, Stenotrophomonas, Xanthomonas, Ralstonia and Bacillus. Our results are in concordance with recent reports of contaminated industrial water systems. In light of this conclusion, we believe that there is a need for increased awareness of possible contamination in uncertified widely used molecular biology reagents, including ultra-pure water. Since sequence-based 16S rDNA techniques are used in a variety of settings for bacterial typing and the characterization of microbial communities, we feel that future certification of molecular biology reagents, as free of nucleic acids, would be advantageous.  相似文献   

14.
The aim of this study was to use the Comet assay to assess genetic damage in the direct-developing frog Eleutherodactylus johnstonei. A DNA diffusion assay was used to evaluate the effectiveness of alkaline, enzymatic and alkaline/enzymatic treatments for lysing E. johnstonei blood cells and to determine the amount of DNA strand breakage associated with apoptosis and necrosis. Cell sensitivity to the mutagens bleomycin (BLM) and 4-nitro-quinoline-1-oxide (4NQO) was also assessed using the Comet assay, as was the assay reproducibility. Alkaline treatment did not lyse the cytoplasmic and nuclear membranes of E. johnstonei blood cells, whereas enzymatic digestion with proteinase K (40 μg/mL) yielded naked nuclei. The contribution of apoptosis and necrosis (assessed by the DNA diffusion assay) to DNA damage was estimated to range from 0% to 8%. BLM and 4NQO induced DNA damage in E. johnstonei blood cells at different concentrations and exposure times. Dose-effect curves with both mutagens were highly reproducible and showed consistently low coefficients of variation (CV ≤ 10%). The results are discussed with regard to the potential use of the modified Comet assay for assessing the exposure of E. johnstonei to herbicides in ecotoxicological studies.  相似文献   

15.
Genomic DNA was extracted from 13 samples of Sargassum polycystum and S. siliquosum collected from various localities around Peninsular Malaysia and Singapore by using four different extraction methods. The yields and the suitability of the DNA to be used as template for the polymerase chain reaction (PCR) was compared. DNA samples were subjected to PCR analysis by using random primers. Only DNA samples that were extracted using the CTAB method were successfully amplified by random amplified polymorphic DNA (RAPD)-PCR. Five of 31 random primers (OPA02, OPA03, OPA04, OPA13 and OPM10) tested amplified sequences of DNA from the DNA samples. Reproducible, amplified products were obtained using these primers and showed some potential to be useful in discriminating individual samples within the genus, in determining relationships between species within a genus and in developing individual fingerprints for individual samples.  相似文献   

16.
Human papillomaviruses (HPVs) encompass a large family of viruses that range from benign to highly carcinogenic. The crucial differences between benign and carcinogenic types of HPV remain unknown, except that the two HPV types differ in the frequency of DNA replication. We have systematically analyzed the mechanism of HPV DNA replication initiation in low-risk and high-risk HPVs. Our results demonstrate that HPV-encoded E2 initiator protein and its four binding sites in the replication origin play pivotal roles in determining the destiny of the HPV-infected cell. We have identified strain-specific single nucleotide variations in E2 binding sites found only in the high-risk HPVs. We have demonstrated that these variations result in attenuated formation of the E2-DNA complex. E2 binding to these sites is linked to the activation of the DNA replication origin as well as initiation of DNA replication. Both electrophoretic mobility shift assay and atomic force microscopy studies demonstrated that binding of E2 from either low- or high-risk HPVs with variant binding sequences lacked multimeric E2-DNA complex formation in vitro. These results provided a molecular basis of differential DNA replication in the two types of HPVs and pointed to a correlation with the development of cancer.  相似文献   

17.
The relationships between DNA methylation and repair induced by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) to the activation of proto-oncogenes and the induction of pulmonary neoplasia by this carcinogen is described. The formation of the O6-methylguanine (O6MG) adduct following metabolic activation of NNK appears to be a major factor in the induction of lung tumors in both rats and mice and in the activation of the K-ras oncogene in lung tumors from A/J mouse. The potent carcinogenicity of NNK in the rat lung correlated strongly with cell specificity for formation and persistence of the O6MG adduct in the Clara cells. This conclusion was supported by studies with nitrosodimethylamine (NDMA), a weak carcinogen in the rodent lung. Treatment with NDMA was not associated with any pulmonary cell specificity for DNA methylation. The high affinity for activation of NNK compared to NDMA was ascribed to a difference in cytochrome P-450 isozymes involved in the activation of these two nitrosamines. In the A/J mouse, the induction of pulmonary tumorigenesis involved direct genotoxic activation of the K-ras proto-oncogene as a result of the base mispairing produced by formation of the O6MG adduct. In contrast, the induction of pulmonary tumors in the rat by NNK does not appear to involve the ras pathway. It is apparent that different molecular mechanisms are involved in the development of pulmonary tumors by NNK in the mouse and rat. The studies described in this paper illustrate the utility of performing dose-response experiments and the quantitation of DNA methylation and repair in not only target tissues but also target cell types. The fundamental knowledge gained from unraveling the mechanism of carcinogenesis by NNK could lead ultimately to the identification of factors important in the development of human lung cancer.  相似文献   

18.
Since commercial copy number standards are not always available for real-time PCR, alternative sources of DNA are used. Unfortunately, stored genomic DNA or PCR amplicon has been shown to be unstable, resulting in variable copy number. More recently, the use of ultramer as copy number standard has been reported. However, there is little information on the stability of ultramer under different storage conditions. Thus the aim of this study was to determine the stability of ultramer as copy number standard under different storage conditions using different mixing methods. We found that ultramer copy number was not affected by storage at either 4 °C or − 20 °C over a period of 30 days. Furthermore, the method of mixing the ultramer did not appear to contribute to variability in results. Irrespective of storage temperature or mixing method, there was less than 5% variance in Ct value over a period of 30 days. A duplicate set of standards costs approximately $0.01. Therefore, the use of ultramer as copy number standards in real-time PCR, is cost effective and convenient.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号