共查询到20条相似文献,搜索用时 15 毫秒
1.
《Harmful algae》2019
A batch culture experiment was conducted to study the interactive effects of ocean acidification (OA) and solar ultraviolet radiation (UVR, 280–400 nm) on the harmful dinoflagellate Karenia mikimotoi. Cells were incubated in 7-days trials under four treatments. Physiological (growth, pigments, UVabc) and toxicity (hemolytic activity and its toxicity to zebrafish embryos) response variables were measured in four treatments, representing two factorial combinations of CO2 (400 and 1000 μatm) and solar irradiance (with or without UVR). Toxic species K. mikimotoi showed sustained growth in all treatments, and there was not statistically significant difference among four treatments. Cell pigment content decreased, but UVabc and hemolytic activity increased in all HC treatments and PAB conditions. The toxicity to zebrafish embryos of K. mikimotoi was not significantly different among four treatments. All HC and UVR conditions and the combinations of HC*UVR (HC-PAB) positively affected the UVabc, hemolytic activity in comparison to the LC*P (LC-P) treatment, and negatively affected the pigments. Ocean acidification (OA) was probably the main factor that affected the chlorophyll-a (Chl-a) and UVabc, but UVR was the main factor that affected the carotenoid (Caro) and hemolytic activity. There were no significant interactive effects of OA*UVR on growth, toxicity to zebrafish embryos. If these results are extrapolated to the natural environment, it can be hypothesized that this strain (DP-C32) of K. mikimotoi cells have the efficient mechanisms to endure the combination of ocean acidification and solar UVR. It is assumed that this toxic strain could form harmful bloom and enlarge the threatening to coastal communities, marine animals, even human health under future conditions. 相似文献
2.
《Harmful algae》2017
Due to global climate change, marine phytoplankton will likely experience low pH (ocean acidification), high temperatures and high irradiance in the future. Here, this work report the results of a batch culture experiment conducted to study the interactive effects of elevated CO2, increased temperature and high irradiance on the harmful dinoflagellate Akashiwo sanguinea, isolated at Dongtou Island, Eastern China Sea. The A. sanguinea cells were acclimated in high CO2 condition for about three months before testing the responses of cells to a full factorial matrix experimentation during a 7-day period. This study measured the variation in physiological parameters and hemolytic activity in 8 treatments, representing full factorial combinations of 2 levels each of exposure to CO2 (400 and 1000 μatm), temperature (20 and 28 °C) and irradiance (50 and 200 μmol photons m−2 s−1). Sustained growth of A. sanguinea occurred in all treatments, but high CO2 (HC) stimulated faster growth than low CO2 (LC). The pigments (chlorophyll a and carotenoid) decreased in all HC treatments. The quantum yield (Fv/Fm) declined slightly in all high-temperature (HT) treatments. High irradiance (HL) induced the accumulation of ultraviolet-absorbing compounds (UVabc) irrespective of temperature and CO2. The hemolytic activity in the LC treatments, however, declined when exposed to HT and HL, but HC alleviated the adverse effects of HT and HL on hemolytic activity. All HC and HL conditions and the combinations of high temperature*high light (HTHL) and high CO2*high temperature*high light (HCHTHL) positively affected the growth in comparison to the low CO2*low temperature*low light (LCLTLL) treatment. High temperature (HT), high light (HL) and a combination of HT*HL, however, negatively impacted hemolytic activity. CO2 was the main factor that affected the growth and hemolytic activity. There were no significant interactive effects of CO2*temperature*irradiance on growth, pigment, Fv/Fm or hemolytic activity, but there were effects on Pm, α, and Ek. If these results are extrapolated to the natural environment, it can be hypothesized that A. sanguinea cells will benefit from the combination of ocean acidification, warming, and high irradiance that are likely to occur under future climate change. It is assumed that faster growth and higher hemolytic activity and UVabc of this species will occur under future conditions compared with those the current CO2 (400 μatm) and temperature (20 °C) conditions. 相似文献
3.
《Harmful algae》2013
In many dinoflagellates, cellular toxin levels have been demonstrated to increase when growth is limited by essential nutrients such as phosphorus. Despite the recognized importance of nutrient limitation to dinoflagellate toxicity, interactions with current and future global environmental change variables have been relatively unexplored. This is a critical question, as dissolution of anthropogenic CO2 emissions into seawater is leading to progressively lower pH values, or ocean acidification. Sea surface temperatures are concurrently increasing, a trend that is also projected to continue in the future. We conditioned a clonal culture of paralytic shellfish poisoning toxin producing Alexandrium catenella (A-11c) isolated from coastal Southern California to factorial combinations of two temperatures, two pCO2 levels, and two phosphate concentrations for a period of eight months. Interactions between these variables influenced growth and carbon fixation rates and although these treatments only elicited minor differences in toxin profile, total cellular toxicity was dramatically affected. Cells conditioned to high pCO2 (levels projected for year 2075) and low phosphate at low temperature (15 °C) were the most toxic, while lower pCO2, higher phosphate levels, and warmer temperature (19 °C) alleviated this toxicity to varying degrees. Overall increased pCO2 generally led to enhanced potency. Our results suggest that future increased ocean acidification may exacerbate the toxic threat posed by this toxic dinoflagellate, especially when combined with nutrient limitation, but that future warmer temperatures could also offset some of this enhanced toxicity. 相似文献
4.
In response to the increases in pCO2 projected in the 21st century, adult coral growth and calcification are expected to decrease significantly. However, no published studies have investigated the effect of elevated pCO2 on earlier life history stages of corals. Porites astreoides larvae were collected from reefs in Key Largo, Florida, USA, settled and reared in controlled saturation state seawater. Three saturation states were obtained, using 1 M HCl additions, corresponding to present (380 ppm) and projected pCO2 scenarios for the years 2065 (560 ppm) and 2100 (720 ppm). The effect of saturation state on settlement and post-settlement growth was evaluated. Saturation state had no significant effect on percent settlement; however, skeletal extension rate was positively correlated with saturation state, with ~50% and 78% reductions in growth at the mid and high pCO2 treatments compared to controls, respectively. 相似文献
5.
6.
《Harmful algae》2019
Light drives phytoplankton photosynthesis, so phytoplankton in their living habitats must exploit variable light levels and exposure durations, depending upon seasons, latitudes, depths and mixing events. Comparative growth, physiology and biochemical compositions were explored for the small Alexnadrium minutum (˜40 μm3 biovolume) and large Alexandrium catenella (˜9300 μm3 biovolume), globally wide spread coastal toxic red tide dinoflagellates, responding to a matrix of photoperiods (Light:Dark, 8:16, 16:8 and 24:0) and growth light irradiances. Smaller A. minutum grew faster under shorter photoperiods across growth light levels, while larger A. catenella grew fastest under longer photoperiods at the lowest applied light level. Photosystem II function responded largely to the instantaneous growth light level across photoperiod lengths, while the cell biovolume-based respiration, antioxidant capacity as well as cell composition responded more to photoperiod duration than to light level. These complex photophysiological responses resolved into linear correlations between growth rate versus cellular antioxidant activity and versus dark respiration, indicating that respiration energizes cellular antioxidant systems to benefit the growth of the cells. These results show the growth responses of Alexandrium species to light levels across photoperiods vary with species, and possibly with cell size. Together with previous results this puts a note of caution on meta-analytical extrapolations of physiological responses to light intensity derived from studies applying different photoperiods to different taxa, because different taxa show differential, even opposite growth responses to photoperiods and light intensities. 相似文献
7.
- Download : Download high-res image (155KB)
- Download : Download full-size image
8.
Partial characterization of a cell-free hemolytic factor produced by Helicobacter pylori 总被引:1,自引:0,他引:1
Abstract Maximum cell-free hemolytic activity of Helicobacter pylori cultured in broth containing 10% horse serum occurred only after the stationary phase of growth was reached, unlike many hemolysins produced by Gram-negative bacteria which are active during exponential growth. This characteristic of the H. pylori hemolytic factor suggested that it might also possess protease activity. However, because no evidence of albumin degradation was found, the hemolysis by cell-free concentrates of H. pylori appears to be due to a unique factor derived from the organism. Because variable hemolysis results were obtained with culture broths lacking albumin or serum, these proteins may act as carriers or stabilizers of the putative hemolysin. 相似文献
9.
Cultured strains and individually isolated dinoflagellate cells from field samples were preserved in different fixatives to find a method of cell preservation that could provide DNA template in PCR reactions and preserve cell morphology for microscopic studies. Lugol’s solution and various ethanol concentrations all showed shortcomings, whereas an initial formalin preservation step followed by storage in 100% methanol fulfilled both demands. Cells could be stored up to 1 year and still provide functional DNA template for positive PCR reactions. The amplified fragment was approximately 700 bp of the D1/D2 region of the LSU rDNA, which is to our knowledge significantly longer than the low-molecular-weight DNA typically reported from formalin preserved samples. By cloning and sequencing the PCR product and subsequently aligning the sequences with previously sequenced fragments of the same or similar species, we confirmed that no base pair alteration had taken place during the time that the cells were fixed and frozen. In another experiment it was demonstrated that the growth phase of cultured Alexandrium minutum did not have any influence on the result of PCR reactions. This was true for extracted DNA from cultures and for direct PCR with a small number of disrupted cells. Phenol/chlorophorm/isoamylalcohol extraction proved to be an unpredictable method for DNA extraction, whereas direct PCR on isolated cells was more reliable. Extracted DNA purified with a commercial DNA cleaning kit always rendered a positive PCR. The environmental condition for cells to be used as DNA template in PCR is discussed. 相似文献
10.
《Harmful algae》2015
The bloom-forming dinoflagellate Akashiwo sanguinea is commonly observed in estuarine and coastal waters around the world. Annually recurrent blooms of this species have been observed in the coastal waters of China, particularly in the Sishili Bay, Yantai since 2004. However, limited studies have been conducted on the recurrence mechanism of A. sanguinea other than periodical monitoring of its population dynamics and associated environmental variables. Thus, to further explore the bloom and succession mechanisms of A. sanguinea in the field, we studied the effects of major nutritional components on the growth and encystment of A. sanguinea, as well as the effects of key environmental factors on the growth of A. sanguinea through a series of laboratory trials. Our results indicated that A. sanguinea was able to grow well within the temperature range of 20–25 °C, salinity range of 20 - 30, with the maximum laboratory irradiance of 78.14 μE m−2 s−1, and was able to survive and grow in low nutrient. However, lower concentrations of nutrients (e.g., nitrate, phosphate) and higher ammonium exerted different degrees of limiting effects on the growth of A. sanguinea, and induced 2.3–21.24% of vegetative cells to form resting cysts simultaneously in laboratory cultures. On the other hand, very limited or no cyst formation was observed in nutrient-replete or extremely low nutrient cultures, indicating the threshold effect of nutritional stress on the encystment of A. sanguinea. The physiological strategy of encystment of A. sanguinea in nutrient-limiting environment facilitates the survival and succession of A. sanguinea species in fluctuating seawaters, and provides seed sources for reoccurring algal blooms under favorable environmental conditions. 相似文献
11.
《Harmful algae》2019
Climate driven increases in ocean temperature and pCO2 have the potential to alter the growth and prevalence of future Harmful Algal Blooms (HABs), but systematic studies on how climate drivers influence toxic algal species relative to non-toxic phytoplankton are lacking. In particular, little is known about how future climate scenarios will affect the growth of the toxic dinoflagellate Alexandrium catenella, which is responsible for the paralytic shellfish poisoning (PSP) events that threaten the health and economy of coastal communities in the Gulf of Maine and elsewhere. The growth responses of A. catenella and two other naturally co-occurring dinoflagellates in the Gulf of Maine—Scrippsiella sp., and Amphidinium carterae—were studied in mono and mixed species cultures. Experimental treatments tested the effects of elevated temperature (20 °C), lower pH (7.8), and the combination of elevated temperature and lower pH on growth rates relative to those in near-current conditions (15 °C; pH 8.1). Growth rates of A. catenella decreased under elevated temperature and lower pH conditions, a response that was largely attributable to the effect of temperature. In contrast, growth rates of Scrippsiella sp. and A. carterae increased under elevated temperature and lower pH conditions, with temperature also being the primary driver of the response. These trends did not change substantially when these species were grown in mixed cultures (A. catenella + Scrippsiella sp., and A. catenella + A. carterae), indicating that allelopathic or competitive interactions did not affect the experimental outcome under the conditions tested. These findings suggest that A. catenella blooms may become less prevalent in the southern regions of the Gulf of Maine, but potentially more prevalent in the northeastern regions of the Gulf of Maine with continued climate change. 相似文献
12.
Isolation and characterization of hemolytic genes from Actinobacillus actinomycetemcomitans 总被引:1,自引:0,他引:1
Abstract Periodontopathic Actinobacillus actinomycetemcomitans produces hemolysin and other leukotoxins. In the present study, two distinct clones which lysed horse erythrocytes were isolated by screening genomic DNA libraries of A. actinomycetemcomitans ATCC 43718 on blood agar plates. DNA hybridization analysis indicates that there were two distinct hemolytic genes present. Sonicated extracts from both Escherichia coli clones possessed hemolytic activities on horse, sheep and human erythrocytes, but not those of rabbit. Rabbit antiserum to A. actinomycetemcomitans ATCC 43718 whole cells inhibited the hemolytic activities of these clones. 相似文献
13.
The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h–1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 μM. This concentration was reduced to 5.1
μM when lower dilution rates were used. The saturation constant for growth on phosphate (K
μ) was between 2.8 and 3.7 μM. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation
model and yielded a maximum rate (Va
max) of 66 nmol P (mg protein)–1 h–1 and a saturation constant for transport (K
t) of 1.6 μM. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)–1 h–1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate
for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the
cells ranged from 0.4 to 1.1 μmol P (mg protein)–1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in
response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage
that enables Chl. limicola to thrive in changing environments.
Received: 9 February 1998 / Accepted: June 1998 相似文献
14.
《Harmful algae》2015
Despite their potential impact on phytoplankton dynamics and biogeochemical cycles, biological associations between algae and bacteria are still poorly understood. The aim of the present work was to characterize the influence of bacteria on the growth and function of the dinoflagellate Alexandrium tamarense. Axenic microalgal cultures were inoculated with a microbial community and the resulting cultures were monitored over a 15-month period, in order to allow for the establishment of specific algal–bacterial associations. Algal cells maintained in these new mixed cultures first experienced a period of growth inhibition. After several months, algal growth and cell volume increased, and indicators of photosynthetic function also improved. Our results suggest that community assembly processes facilitated the development of mutualistic relationships between A. tamarense cells and bacteria. These interactions had beneficial effects on the alga that may be only partly explained by mixotrophy of A. tamarense cells. The potential role of organic exudates in the establishment of these algal–bacterial associations is discussed. The present results do not support a role for algal–bacterial interactions in dinoflagellate toxin synthesis. However, variations observed in the toxin profile of A. tamarense cells during culture experiments give new clues for the understanding of biosynthetic pathways of saxitoxin, a potent phycotoxin. 相似文献
15.
Michael P. Spector 《FEMS microbiology letters》1990,74(2-3):175-183
Abstract In nature, bacteria encounter a variety of environmental conditions, among the most frequent of these is the limitation or starvation of one or more essential nutrients. It is reasonable to assume, therefore, that bacteria have evolved mechanisms to enhance their survival over prolonged periods of nutrient starvation. We have identified eight genetic loci in the enteropathogen Salmonella typhimurium , using Mu d -directed lacZ operon fusion technology, that were induced in response to two or more different starvation conditions (sti) . In simultaneous studies, we also identified genetic loci, using Mu d-lac fusions, which respond to only phosphate-starvation conditions (psi) . We further characterized these loci as to their induction-characteristics, kinetics of induction, expression during growth on different carbon sources, and approximate location on the S. typhimurium genetic map. In concurrent studies, we analyzed whole cell extracts of S. typhimurium grown under a variety of nutrients oxydation conditions as well as under nonlimiting conditions, using two-dimensional polyacrylamide gel electrophoresis. Results from these studies correlated well with our gene fusion studies. In more recent studies, we have demonstrated a complex genetic regulation of a number of these starvation-inducible loci, and have implicated at least four of these loci in the long term starvation-survival of S. typhimurium . 相似文献
16.
Yu-Shan Wu Zih-Jie Liao Kai-Shiuan Wang Feng-Di T. Lung 《Bioorganic & medicinal chemistry letters》2013,23(10):2929-2932
There is a great urgency in developing a new generation of antibiotics and antimicrobial agents since the bacterial resistance to antibiotics have increased dramatically. A series of overlapped peptide fragments of Ixosin-B, an antimicrobial peptide with amino acid sequence of QLKVDLWGTRSGIQPEQHSSGKSDVRRWRSRY, was designed, synthesized and examined for their antimicrobial activities against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. A potent 11-mer peptide TSG-8-1, WWSYVRRWRSR-amide, was developed, which exhibited antimicrobial activity against E. coli and S. aureus while very little hemolytic activity in human erythrocytes was observed at high dose level. This peptide could be further modified for the development of a potent antimicrobial agent in the future. 相似文献
17.
A series of quaternary ammonium compounds (QUATS) derived from l-Phenylalanine have been synthesized and their antibacterial efficiencies were determined against various strains of Gram-positive and Gram-negative bacteria. The antibacterial activity increased with increasing chain length, exhibiting a cut-off effect at C14 for Gram-positive and C12 for Gram-negative bacteria. The l-Phenylalanine QUATS displayed enhanced antibacterial properties with a higher cut-off point compared to their corresponding l-Phenylalanine ester hydrochlorides. The CMC was correlated with the MIC, inferring that micellar activity contributes to the cut-off effect in antibacterial activity. The hemolytic activities (HC50) of the QUATS against human red blood cells were also determined to illustrate the selectivity of these QUATS for bacterial over mammalian cells. In general, the MIC was lower than the HC50, and assessment of the micellar contribution to the antibacterial and hemolytic evaluation in TBS as a common medium confirmed that these QUATS can act as antibacterial, yet non-toxic molecules at their monomer concentrations. The interaction of the QUATS with the phospholipid vesicles (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) in the presence of 1-anilino-8-naphthalene sulfonate (ANS) and 1,6-diphenyl-1,3,5-hexatriene (DPH) as fluorescence probes showed that the presence of the quaternary ammonium moiety causes an increase in hydrophobic interactions, thus causing an increase in antibacterial activity. 相似文献
18.
19.
Mohamed Sellami Ali Châari Imen Aissa Mohamed Bouaziz Youssef Gargouri Nabil Miled 《Process Biochemistry》2013,48(10):1481-1487
Preparation of dopamine derivatives was carried out as a response to the increasing demand for new lipophilized antioxidants in food, cosmetic and pharmaceutical industries. A large series of dopamine esters (DA-C3 to DA-C18:1) with increasing lipophilicity was synthesized using lipase from Candida antarctica (Novozyme 435) as a biocatalyst. The highest conversion yield (52.75%) was reached when caprylic acid (DA-C8) was used as acyl donor. Synthesized compounds were purified and evaluated for their antioxidant activity using the DPPH and the ABTS tests. Results showed that esterification had little effect on radical-scavenging capacity. However, long chain fatty acid esters displayed higher protective effect of oil against oxidation at 70 °C as compared to the parent dopamine or to the BHT. The hemolytic activity of dopamine esters was studied. Middle chain length derivatives (DA-C8 and DA-C12) of dopamine and oleic acid derivative (DA-C18:1) showed the highest hemolytic activity against human erythrocyte. The antimicrobial activities of dopamine esters were also evaluated using well diffusion and minimal inhibition concentration methods. Among all the tested compounds, DA-C8 and DA-C12 exhibited the highest antibacterial activities. These results open up potential applications by using dopamine derivatives as antioxidants and antimicrobial compounds in cosmetic, food and pharmaceutical industries. 相似文献
20.
《Harmful algae》2013
We investigated the effects of pH on movement behaviors of the harmful algal bloom causing raphidophyte Heterosigma akashiwo. Motility parameters from >8000 swimming tracks of individual cells were quantified using 3D digital video analysis over a 6-h period in 3 pH treatments reflecting marine carbonate chemistry during the pre-industrial era, currently, and the year 2100. Movement behaviors were investigated in two different acclimation-to-target-pH conditions: instantaneous exposure and acclimation of cells for at least 11 generations. There was no negative impairment of cell motility when exposed to elevated PCO2 (i.e., low pH) conditions but there were significant behavioral responses. Irrespective of acclimation condition, lower pH significantly increased downward velocity and frequency of downward swimming cells (p < 0.001). Rapid exposure to lower pH resulted in 9% faster downward vertical velocity and up to 19% more cells swimming downwards (p < 0.001). Compared to pH-shock experiments, pre-acclimation of cells to target pH resulted in ~30% faster swimming speed and up to 46% faster downward velocities (all p < 0.001). The effect of year 2100 PCO2 levels on population diffusivity in pre-acclimated cultures was >2-fold greater than in pH-shock treatments (2.2 × 105 μm2 s−1 vs. 8.4 × 104 μm2 s−1). Predictions from an advection-diffusion model, suggest that as PCO2 increased the fraction of the population aggregated at the surface declined, and moved deeper in the water column. Enhanced downward swimming of H. akashiwo at low pH suggests that these behavioral responses to elevated PCO2 could reduce the likelihood of dense surface slick formation of H. akashiwo through reductions in light exposure or growth independent surface aggregations. We hypothesize that the HAB alga's response to higher PCO2 may exploit the signaling function of high PCO2 as indicative of net heterotrophy in the system, thus indicative of high predation rates or depletion of nutrients. 相似文献