首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The pineal gland is a neuroendocrine gland responsible for nocturnal synthesis of melatonin. During early development of the rodent pineal gland from the roof of the diencephalon, homeobox genes of the orthodenticle homeobox (Otx)- and paired box (Pax)-families are expressed and are essential for normal pineal development consistent with the well-established role that homeobox genes play in developmental processes. However, the pineal gland appears to be unusual because strong homeobox gene expression persists in the pineal gland of the adult brain. Accordingly, in addition to developmental functions, homeobox genes appear to be key regulators in postnatal phenotype maintenance in this tissue. In this paper, we review ontogenetic and phylogenetic aspects of pineal development and recent progress in understanding the involvement of homebox genes in rodent pineal development and adult function. A working model is proposed for understanding the sequential action of homeobox genes in controlling development and mature circadian function of the mammalian pinealocyte based on knowledge from detailed developmental and daily gene expression analyses in rats, the pineal phenotypes of homebox gene-deficient mice and studies on development of the retinal photoreceptor; the pinealocyte and retinal photoreceptor share features not seen in other tissues and are likely to have evolved from the same ancestral photodetector cell.  相似文献   

3.
The regulation of DNA repair during development   总被引:3,自引:0,他引:3  
DNA repair is important in such phenomena as carcinogenesis and aging. While much is known about DNA repair in single-cell systems such as bacteria, yeast, and cultured mammalian cells, it is necessary to examine DNA repair in a developmental context in order to completely understand its processes in complex metazoa such as man. We present data to support the notion that proliferating cells from organ systems, tumors, and embryos have a greater DNA repair capacity than terminally differentiated, nonproliferating cells. Differential expression of repair genes and accessibility of chromatin to repair enzymes are considered as determinants in the developmental regulation of DNA repair.  相似文献   

4.
5.
6.
The S-phase-dependent radioresistance to killing uniformly seen in eukaryotic cells is absent in radiosensitive mutants with defects in genes involved in the repair of DNA double-strand breaks (DSBs) by homologous recombination (homologous recombination repair: HRR). This implicates, for the first time, a concrete DNA repair process in the radiosensitivity of a specific cell cycle phase. The cell cycle-dependent fluctuations in radiosensitivity reflect a fundamental and well-documented radiobiological phenomenon that still awaits a detailed molecular characterization. The underlying mechanisms are likely to combine aspects of DNA repair and cell cycle regulation. Advances in both fields allow a first dissection in the cell cycle of the molecular interplay between DSB repair and DNA damage checkpoint response and its contribution to cell survival. Here we review the available literature on the topic, speculate on the ramifications of this information for our understanding of cellular responses to DNA damage, and discuss future directions in research. An effort is made to integrate relevant phenomena of radiation action, such as low-dose radiosensitivity and the G(2) assay in this scheme.  相似文献   

7.
Although genes involved in common developmental programs are usually scattered throughout the metazoan genome, there are some important examples of functionally interconnected regulatory genes that display close physical linkage. In particular the homeotic genes, which determine the identities of body parts, are clustered in the Hox complexes and clustering is thought to be crucial for the proper execution of their developmental programs. Here we describe the organization and functional properties of a more recently identified cluster of six homeobox genes at 93DE on the third chromosome of Drosophila. These genes, which include tinman, bagpipe, ladybird early, ladybird late, C15, and slouch, all participate in mesodermal patterning and differentiation programs and show multiple regulatory interactions among each other. We propose that their clustering, through unknown mechanisms, is functionally significant and discuss the similarities and differences between the 93DE homeobox gene cluster and the Hox complexes.  相似文献   

8.
植物同源异型基因及同源异型盒基因的研究进展   总被引:3,自引:0,他引:3  
植物同源异型基因及同源异型盒基因是涉及植物个体发育调节的两类重要转录因子编码基因.近10年来的研究表明,这两类基因及其产物的结构与功能具有明显的差异.深入研究这两类基因的结构与功能对揭示植物的发育机制具有重要意义.  相似文献   

9.
Marek LR  Bale AE 《DNA Repair》2006,5(11):1317-1326
Fanconi anemia (FA) is a genetically heterogeneous disease characterized by developmental defects, progressive bone marrow failure and cancer susceptibility. Cells derived from patients with FA show spontaneous chromosomal aberrations and hypersensitivity to cross-linking agents, indicating a cellular defect in DNA repair. Among the 12 FA genes, only FANCD2, FANCL and FANCM have Drosophila homologs. Given this difference between the human and Drosophila FA pathways, it is unknown whether the fly homologs function in DNA repair. Here, we report that knockdown of Drosophila FANCD2 or FANCL leads to specific hypersensitivity to cross-linking agents. Further analysis revealed that FANCD2 and FANCL function in a linear pathway with FANCL being necessary for the monoubiquitination of FANCD2. FANCD2 mutants also exhibited the same defect in the ionizing radiation-inducible S-phase checkpoint that is seen in mammalian cells deficient for this gene. Finally, in an assay for inactivating mutations, FANCD2 mutants have an elevated mutation rate in response to nitrogen mustard, indicating that these flies are hypermutable. Taken together, these data demonstrate that Drosophila FANCD2 and FANCL play a critical role in DNA repair. Because of the lack of other FA genes, further studies will determine whether the conserved FA genes function as the minimal machinery or whether additional genes are involved in the Drosophila FA pathway.  相似文献   

10.
11.
Genetic biomarkers of therapeutic radiation sensitivity   总被引:7,自引:0,他引:7  
Fernet M  Hall J 《DNA Repair》2004,3(8-9):1237-1243
The occurrence of acute or late normal tissue reactions after therapeutic radiotherapy and cellular responses in in vitro radiosensitivity assays do not correlate well suggesting that to date no one test system is suitable for predicting the risk or severity of such reactions. New insights into the underlying molecular mechanisms of this sensitivity are coming from studies that assess associations between common polymorphisms in DNA damage detection and repair genes and the development of adverse reactions to radiotherapy. The presence of such variants may alter protein function and an individual's capacity to repair damaged DNA modifying the response of the normal tissue. Polymorphisms in the XRCC1, ATM, hHR21 and TGFbeta1 genes have been shown to be associated with an increased risk of developing an adverse normal tissue reaction to radiotherapy, whilst one variant in the ATM gene has been reported to be radioprotective. Functional studies, taking into account either the haplotypes or the combined genotypes when multiple polymorphisms in a gene are present, will be necessary to establish the mechanistic basis of these associations. In the future association studies can only benefit from the analysis of multiple genes in large, well-characterized cohorts in particular to identify genetic factors that might specifically influence the temporal occurrence of these adverse reactions.  相似文献   

12.
Differentiation is an epigenetic program that involves the gradual loss of pluripotency and acquisition of cell type-specific features. Understanding these processes requires genome-wide analysis of epigenetic and gene expression profiles, which have been challenging in primary tissue samples due to limited numbers of cells available. Here we describe the application of high-throughput sequencing technology for profiling histone and DNA methylation, as well as gene expression patterns of normal human mammary progenitor-enriched and luminal lineage-committed cells. We observed significant differences in histone H3 lysine 27 tri-methylation (H3K27me3) enrichment and DNA methylation of genes expressed in a cell type-specific manner, suggesting their regulation by epigenetic mechanisms and a dynamic interplay between the two processes that together define developmental potential. The technologies we developed and the epigenetically regulated genes we identified will accelerate the characterization of primary cell epigenomes and the dissection of human mammary epithelial lineage-commitment and luminal differentiation.  相似文献   

13.
14.
The developmental failure of mammalian parthenogenote has been a mystery for a long time and posed a question as to why bi-parental reproduction is necessary for development to term. In the 1980s, it was proven that this failure was not due to the genetic information itself, but to epigenetic modification of genomic DNA. In the following decade, several studies successfully identified imprinted genes which were differentially expressed in a parent-of-origin-specific manner, and it was shown that the differential expression depended on the pattern of DNA methylation. These facts prompted development of genome-wide systematic screening methods based on DNA methylation and differential gene expression to identify imprinted genes. Recently computational approaches and microarray technology have been introduced to identify imprinted genes/loci, contributing to the expansion of our knowledge. However, it has been shown that the gene silencing derived from genomic imprinting is accomplished by several mechanisms in addition to direct DNA methylation, indicating that novel approaches are further required for comprehensive understanding of genomic imprinting. To unveil the mechanism of developmental failure in mammalian parthenogenote, systematic screenings for imprinted genes/loci have been developed. In this review, we describe genomic imprinting focusing on the history of genome-wide screening.  相似文献   

15.
Liu S  Tao Y  Chen X  Cao Y 《Molecular biology reports》2012,39(5):6179-6185
The dynamic interplay in polycomb group (PcG) and trithorax group (TrxG) proteins in response to DNA damage directly involves in the DNA double strand breaks (DSBs) sites and potentially function in both homologous recombination (HR) and nonhomologous end joining (NHEJ) pathways. The process includes chromatin remodeling that is a major mechanism used by cells to relax chromatin in DNA damage response (DDR) and repair. PcGs show resistance ability to the process while, some tumor suppressor genes involves in the DDR and repair by interacting with TrxGs. Understanding how the dynamic interplay in PcGs and TrxGs impacts on DDR will shed light on the mechanisms of carcinogenesis and develop a new target from anti-DDR related drugs.  相似文献   

16.
This article suggests that apparent disagreements between the concept of developmental constraints and neo-Darwinian views on morphological evolution can disappear by using a different conceptualization of the interplay between development and selection. A theoretical framework based on current evolutionary and developmental biology and the concepts of variational properties, developmental patterns and developmental mechanisms is presented. In contrast with existing paradigms, the approach in this article is specifically developed to compare developmental mechanisms by the morphological variation they produce and the way in which their functioning can change due to genetic variation. A developmental mechanism is a gene network, which is able to produce patterns in space though the regulation of some cell behaviour (like signalling, mitosis, apoptosis, adhesion, etc.). The variational properties of a developmental mechanism are all the pattern transformations produced under different initial and environmental conditions or IS-mutations. IS-mutations are DNA changes that affect how two genes in a network interact, while T-mutations are mutations that affect the topology of the network itself. This article explains how this new framework allows predictions not only about how pattern formation affects variation, and thus phenotypic evolution, but also about how development evolves by replacement between pattern formation mechanisms. This article presents testable inferences about the evolution of the structure of development and the phenotype under different selective pressures. That is what kind of pattern formation mechanisms, in which relative temporal order, and which kind of phenotypic changes, are expected to be found in development.  相似文献   

17.
A genetic screen has been developed in Drosophila for identifying host-repair genes responsible for processing DNA lesions formed during mobilization of P transposable elements. Application of that approach to repair deficient mutants has revealed that the mei-41 and mus302 genes are necessary for recovery of P-bearing chromosomes undergoing transposition. Both of these genes are required for normal postreplication repair. Mutants deficient in excision repair, on the other hand, have no detected effect on the repair of transposition-induced lesions. These observations suggest that P element-induced lesions are repaired by a postreplication pathway of DNA repair. The data further support recent studies implicating double-strand DNA breaks as intermediates in P transposition, because the mei-41 gene has been genetically and cytologically associated with the repair of interrupted chromosomes. Analysis of this system has also revealed a striking stimulation of site-specific gene conversion and recombination by P transposition. This result strongly suggests that postreplication repair in this model eukaryote operates through a conversion/recombination mechanism. Our results also support a recently developed model for a conversion-like mechanism of P transposition (Engels et al., 1990). Involvement of the mei-41 and mus302 genes in the repair of P element-induced double-strand breaks and postreplication repair points to a commonality in the mechanisms of these processes.  相似文献   

18.
Breast cancer is the most common malignancy in women. Radiotherapy is frequently used in patients with breast cancer, but some patients may be more susceptible to ionizing radiation, and increased exposure to radiation sources may be associated to radiation adverse events. This susceptibility may be related to deficiencies in DNA repair mechanisms that are activated after cell-radiation, which causes DNA damage, particularly DNA double strand breaks. Some of these genetic susceptibilities in DNA-repair mechanisms are implicated in the etiology of hereditary breast/ovarian cancer (pathologic mutations in the BRCA 1 and 2 genes), but other less penetrant variants in genes involved in sporadic breast cancer have been described. These same genetic susceptibilities may be involved in negative radiotherapeutic outcomes. For these reasons, it is necessary to implement methods for detecting patients who are susceptible to radiotherapy-related adverse events. This review discusses mechanisms of DNA damage and repair, genes related to these functions, and the diagnosis methods designed and under research for detection of breast cancer patients with increased radiosensitivity.  相似文献   

19.
In many species of bacteria most inducible DNA repair genes are regulated by LexA homologues and are dependent on RecA for induction. We have shown previously by analysing the induction of recA that two mechanisms for the induction of gene expression following DNA damage exist in Mycobacterium tuberculosis. Whereas one of these depends on RecA and LexA in the classical way, the other mechanism is independent of both of these proteins and induction occurs in the absence of RecA. Here we investigate the generality of each of these mechanisms by analysing the global response to DNA damage in both wild-type M. tuberculosis and a recA deletion strain of M. tuberculosis using microarrays. This revealed that the majority of the genes that were induced remained inducible in the recA mutant stain. Of particular note most of the inducible genes with known or predicted functions in DNA repair did not depend on recA for induction. Amongst these are genes involved in nucleotide excision repair, base excision repair, damage reversal and recombination. Thus, it appears that this novel mechanism of gene regulation is important for DNA repair in M. tuberculosis.  相似文献   

20.
Unraveling the knots in plant development.   总被引:17,自引:0,他引:17  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号