首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholera toxin (CT) covalently linked to horseradish peroxidase (HRP) is a specific cytochemical marker for its receptor, the monosialoganglioside GM1. The binding and endocytosis of exogenous [3H]GM1 by cultured murine neuroblastoma cells (line 2A [CCl-131] ), which contain predominantly GM3, was examined by quantitative electron microscope autoradiography. The relationship between exogenous receptor, [3H]GM1, and CT HRP was studied in double labeling experiments consisting of autoradiographic demonstration of [3H]GM1 and cytochemical visualization of HRP. Exogenous [3H]GM1 was not degraded after its endocytosis by cells for 2 h at 37 degrees C. Quantitative studies showed similar grain density distributions in cells treated with [3H]GM1 alone and in cells treated with [3H]GM1 followed by CT-HRP. Qualitative studies conducted in double labeling experiments showed autoradiographic grains over the peroxidase-stained plasma membrane, lysosomes, and vesicles at the trans aspect of the Golgi apparatus. The findings indicate that exogenous glycolipid is associated with the plasmid membrane of deficient cells and undergoes endocytosis. The quantitative ultra-structural autoradiographic studies are consistent with the hypothesis that the spontaneous endocytosis of exogenous [3H]GM1 controls the subsequent uptake of CT-HRP.  相似文献   

2.
GM1 (II3Neu5Ac-GgOse4Cer)-oligosaccharide was prepared from the ganglioside by ozonolysis and alkaline fragmentation, reductively aminated and coupled to the heterobifunctional cross-linker succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate. The resulting derivative reacted with free sulfhydryl groups and readily cross-linked to cell surface components on rat glioma C6 cells which are GM1-deficient. Attachment of the GM1-oligosaccharide derivative, which was monitored by increased binding of 125I-cholera toxin to the cells, was both time- and concentration-dependent. Prior treatment of the cells with dithiothreitol enhanced the attachment by generating additional free sulfhydryl groups. The affinity of cholera toxin for cells treated with the GM1-oligosaccharide derivative or with GM1 was similar. The nature of the newly generated toxin receptors was determined by Western blotting. Membranes from derivatized cells were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the resolved components were electrophoretically transferred to a nitrocellulose sheet which was overlain with 125I-cholera toxin. The toxin bound to a wide variety of membrane proteins, most of which were trypsin-sensitive. No such binding was observed using membranes from control cells. Although the GM1-neoganglioproteins newly generated on the surface of rat glioma C6 cells readily bound cholera toxin, the cells did not become more responsive to the toxin as measured by increased production of cyclic AMP or activation of adenylate cyclase. In contrast, cells exposed to GM1 became highly responsive to the toxin. Thus, neoganglioproteins on the cell surface appear to behave as nonfunctional receptors for cholera toxin.  相似文献   

3.
The ability of Fuc-GM1 ganglioside to mimic the receptor function of GM1 for cholera toxin (CT) has been investigated. For this purpose, rat glioma C6 cultured cells were enriched with Fuc-GM1 and the responsiveness to CT was compared with that of cells enriched with GM1 ganglioside. Fuc-GM1 was taken up by cells as rapidly and to the same extent as GM1. When comparable amounts of ganglioside were associated, the cells enriched with Fuc-GM1 bound the same amount of 125I-CT as did cells enriched with GM1. Under conditions in which GM1- and Fuc-GM1-enriched cells bound comparable amounts of CT, the Fuc-GM1-treated cells accumulated virtually the same amount of cyclic AMP as did GM1-treated cells, and activation of adenylate cyclase was also similar. The lag time preceding the CT-induced cAMP accumulation was the same in Fuc-GM1- and GM1-enriched cells. High-sensitivity isothermal titration calorimetry (ITC) experiments showed that the association constants of CT with Fuc-GM1 or GM1 ganglioside were comparable (4 x 10(7) M-1 and 1.9 x 10(7) M-1, respectively, at 25 degrees C). Also, the association constants of the B-subunit pentamer with Fuc-GM1 or GM1 ganglioside were comparable (about 3 x 10(7) M-1 and 7 x 10(7) M-1, respectively, at 25 degrees C).  相似文献   

4.
The topographical distribution of endocrine cells in the crypt and villus epithelium along the length of the mouse intestine was studied. Argyrophil reactivity using the Grimelius stain was used to estimate the total endocrine population of the intestine. Comparisons were then made with the fraction of endocrine cells containing glucagon like material, stained immunocytochemically using rabbit anti-glucagon antisera. A highly significant reduction in the incidence of endocrine cells (argyrophil reactive) from the proximal to distal end of the intestine was noted. However, only 10-30% of these cells contained glucagon like material in the crypts of the duodenum, jejunum and ileum, compared to 30–60% in the crypts of the colon and rectum. The distribution of endocrine cells (argyrophil reactive) was maximal in the lower regions of the proliferative zone of the crypts but showed no significant variation along the length of the villi. Cells containing glucagon like material were also most frequent in the lower regions of the proliferative zone of the crypts, but were not generally found above the botom third of the villi. Each crypt in the small intestine contains between 3 and 5 endocrine cells one of which contained glucagon like immunoreactive material. In the colon and rectum each crypt contains about 6-8 endocrine cells, of which 3–4 contained glucagon like immunoreactive material. These results indicate that a sub-set of cells containing glucagon like material, differentiate early in the lineage of endocrine cells within the proliferative zone of the intestinal crypts.  相似文献   

5.
The effect of cholera toxin on transport Ca-ATPase was studied in membrane fragments from human red cells. A consistently moderate inhibition was found when fragments were previously incubated with toxin in the presence of beta-NAD but not in its absence of after treatment with non-activated toxin. In calmodulin-free preparations, both Ca affinity and maximal rate of hydrolysis were affected whereas only affinity was altered in calmodulin-deficient membranes.  相似文献   

6.
E O'Keefe  P Cuatrecasas 《Life sciences》1977,21(11):1649-1653
Ganglioside GM1, which can insert spontaneously into the membrane of intact cells, has been measured after insertion into transformed fibroblasts by cholera toxin (choleragen) binding, for which ganglioside GM1 is the natural receptor. Choleragen binding is not altered in starved, quiescent cells over a four-day period. Dividing cells show decreased binding in proportion to cell division. Thus, neither dividing nor quiescent cells appear to metabolize or otherwise degrade this membrane component.  相似文献   

7.
Summary The B, or binding, subunit of cholera enterotoxin forms a pentameric ring structure in the intact toxin, and also when the subunit is isolated from the A subunit. The thermal denaturation of the B subunit ring was examined by differential scanning calorimetry in the presence and absence of ganglioside GM1, its natural receptor. In the absence of ganglioside an irreversible endotherm was observed with maximal excess apparent heat capacity, Cmax, at 74.6° C. When the ganglioside was added in increasing amounts, multiple transitions were observed at higher temperatures, the most prominent having a Cmax at 90.8° C. At high ganglioside concentrations, the 74.6° C transition was not observed. In addition to the thermodynamic results a model is proposed for the interaction of GM1 and B subunit pentamer. This model is derived independently of the calorimetric results (but is consistent with such data) and is based upon considerations of the geometry of the GM1 micelle-B subunit pentamer.Abbreviations Mr molecular weight in daltons - GM1 H3Neu-AcGgOse4Cer* = Gall 3Ga1NAc1 4Gal-[3 - 2NeuAc]1 4Glc1 1Cer (asterisked form follows the recommendations of the IUPACIUB Commission on Biochemical Nomenclature, Ref. 3) - R molar ratio of GM1 to B monomer - DSC differential scanning calorimetry - Cmax excess apparent heat capacity - Cmax maximal value of Cex - tm temperature (° C) at Cex = Cmax - t1/2 peak width in °C at Cex = Cmax/2 - Hcal calorimetric enthalpy - C p d van't Hoff enthalpy - C p d change in specific heat accompanying denaturation  相似文献   

8.
The possible role of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosylceramide (GM1) ganglioside in the lipolytic activity of cholera toxin on isolated fat cells has been examined. Analyses of the ganglioside content and composition of intact fat cells, their membranous ghosts, and the total particulate fraction of these cells indicate that N-acetylneuraminylgalactosylglucosylceramide (GM3) represents the major ganglioside, with substantial amounts of N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosylceramide (GM2) and smaller amounts of other higher homologues also present. Native GM1 was not detected in any of these preparations. Examination of the relative capacities of various exogenously added radiolabeled sphingolipids to bind to the cells indicated that GM2 and glucosylsphingosine were accumulated by the cells to extents comparable to GM1. Galactosylsphingosine and sulfatide also exhibited significant, although lesser, binding affinities for the cells. The adipocytes appeared to nonspecifically bind exogenously added GM1; saturation of binding sites for GM1 could not be observed up to the highest concentration tested (2 X 10(-4) M), wherein about 7 X 10(9) molecules were associated with the cells. Essentially all of this exogenously added GM1 was found bound to the plasma membrane "ghost" fraction. Investigation of the biological responses of the cells confirmed their sensitivities to both cholera toxin and epinephrine-stimulated lipolysis, as well as the lag period displayed during the toxin's action. While we could confirm that the toxin's lipolytic activity can be enhanced by prior treatment of the fat cells with GM1, several of the observed characteristics of this phenomenon differ from earlier reported findings. Accordingly, added GM1 was able to enhance only the subsequent rate, but not the extent, of toxin-stimulated glycerol release (lipolysis) from the cells. We also were unable to confirm the ability of GM1 to enhance the toxin's activity at either saturating or at low toxin concentrations. The limited ability of added GM1 to enhance the toxin's activity appeared in a unique bell-shaped dose-response manner. The inability of high levels of GM1 to stimulate a dose of toxin that was ineffective on native cells suggests that the earlier reported ability of crude brain gangliosides to accomplish this was due to some component other than GM1 in the crude extract. While several glycosphingolipids and some other carbohydrate-containing substances that were tested lacked the ability to mimic the enhancing effect of GM1, 4-methylumbelliferyl-beta-D-galactoside exhibited an effect similar to, although less pronounced than, that of GM1. The findings in these studies are unable to lend support to the earlier hypothesis that (a) GM1 is cholera toxin's naturally occurring membrane receptor on native fat cells, and (b) the ability of exogenously added GM1 to enhance the toxin's lipolytic activity represents the specific creation of additional natural receptors on adipocytes...  相似文献   

9.
Cholera toxin has been used as a tool to study the effects of cAMP on the activation of B cells but may have effects independent of its ability to elevate cAMP. We found five lines of evidence which suggested that cholera toxin suppressed mitogen-stimulated B cell activation through a cAMP-independent pathway. 1) Cholera toxin (1 microgram/ml) was consistently more suppressive than forskolin (100 microM) despite the induction of higher intracellular cAMP levels by forskolin. 2) Cholera toxin was more suppressive at 1 microgram/ml than at 0.1 microgram/ml despite equivalent elevations of cAMP. 3) Washing B cells following their incubation with cholera toxin reversed much of the inhibition without altering intracellular cAMP levels. 4) The A subunit of cholera toxin, which at high concentrations (10 micrograms/ml) induced levels of cAMP comparable to those induced by cholera toxin (1 and 0.1 microgram/ml), did not inhibit B cell activation. 5) cAMP derivatives at high concentrations were much less effective than was cholera toxin in suppressing B cell activation. Although the elevation of cAMP may cause a mild inhibition of B cell proliferation, we found that even a marked elevation of cAMP did not suppress B cell proliferation, unless the elevation was persistent. We did, however, observe that the degree of toxin inhibition more closely paralleled binding of the toxin to B cells than toxin stimulation of cAMP. This result raised the possibility that binding of cholera toxin to its ganglioside GM1 receptor mediated an inhibitory signal which suppressed B cell proliferation.  相似文献   

10.
The topographical distribution of endocrine cells in the crypt and villus epithelium along the length of the mouse intestine was studied. Argyrophil reactivity using the Grimelius stain was used to estimate the total endocrine population of the intestine. Comparisons were then made with the fraction of endocrine cells containing glucagon like material, stained immunocytochemically using rabbit anti-glucagon antisera. A highly significant reduction in the incidence of endocrine cells (argyrophil reactive) from the proximal to distal end of the intestine was noted. However, only 10-30% of these cells contained glucagon like material in the crypts of the duodenum, jejunum and ileum, compared to 30-60% in the crypts of the colon and rectum. The distribution of endocrine cells (argyrophil reactive) was maximal in the lower regions of the proliferative zone of the crypts but showed no significant variation along the length of the villi. Cells containing glucagon like material were also most frequent in the lower regions of the proliferative zone of the crypts, but were not generally found above the bottom third of the villi. Each crypt in the small intestine contains between 3 and 5 endocrine cells one of which contained glucagon like immunoreactive material. In the colon and rectum each crypt contains about 6-8 endocrine cells, of which 3-4 contained glucagon like immunoreactive material. These results indicate that a sub-set of cells containing glucagon like material, differentiate early in the lineage of endocrine cells within the proliferative zone of the intestinal crypts.  相似文献   

11.
In a previous paper we showed that the B-pentamer of cholera toxin (CT-B) binds with reduced binding strength to different C(1) derivatives of N-acetylneuraminic acid (NeuAc) of the natural receptor ganglioside, GM1. We have now extended these results to encompass two large amide derivatives, butylamide and cyclohexylmethylamide, using an assay in which the glycosphingolipids are adsorbed on hydrophobic PVDF membranes. The latter derivative showed an affinity approximately equal to that earlier found for benzylamide ( approximately 0.01 relative to native GM1) whereas the former revealed a approximately tenfold further reduction in affinity. Another derivative with a charged C(1)-amide group, aminopropylamide, was not bound by the toxin. Toxin binding to C(7) derivatives was reduced by about 50% compared with the native ganglioside. Molecular modeling of C(1) and C(7) derivatives in complex with CT-B gave a structural rationale for the observed differences in the relative affinities of the various derivatives. Loss of or altered hydrogen bond interactions involving the water molecules bridging the sialic acid to the protein was found to be the major cause for the observed drop in CT-B affinity in the smaller derivatives, while in the bulkier derivatives, hydrophobic interactions with the protein were found to partly compensate for these losses.  相似文献   

12.
Cholera toxin (CT), covalently attached to horseradish peroxidase (HRP), is a specific cytochemical marker for GM1 ganglioside (GM1) and retains the ability of the native toxin to raise levels of cyclic AMP in avian erythrocytes. Using a cytochemical stain for HRP, we found that 9% of control cultured murine neuroblastoma cells bound cholera toxin-horseradish peroxidase conjugates (CT-HRP) on their surfaces after incubations for 1 h at 4 degrees C. Exogenous GM1, the natural receptor of CT, becomes associated in the culture medium with the plasma membranes of these cells so that 96% of cells are stained. Cells preincubated with GM1 at 4 degrees C were exposed to CT-HRP for 1 h at 4 degrees C. After washing, cells were incubated at 37 degrees C for 30 min-24 h. Endocytosis of CT-HRP occurred within 30 min and CT-HRP remained, throughout the 24-h period, in tubules, vesicles, and cisternae often found near the Golgi apparatus; this aggregate of peroxidase-positive elements probably corresponds to Golgi apparatus-endoplasmic reticulum-lysosomes (GERL) of neurons. In metaphase cells, CT-HRP was observed in aggregates of vesicles and tubules clustered near the centriole. Conjugates of HRP with subunit B, the GM1 binding component of CT, were internalized by cells pretreated with GM1 as was CT-HRP. The 9% of neuroblastoma cells binding CT-HRP in the absence of exogenous GM1 internalized the ligand in a manner indistinguishable from that of the treated cells. These findings indicate that, in neuroblastoma cells, a system of vesicles, tubules, and cisternae, analogous to GERL of neurons, is the primary recipient of adsorptive endocytosis of CT bound to endogenous or exogenously introduced GM1.  相似文献   

13.
将B型肉毒毒素在毒素粗提阶段用胰蛋白酶处理,再经浓缩、柱层析和结晶得到纯化的B型肉毒毒素复合物。结果表明:B型肉毒神经毒素经胰蛋白酶处理后单链裂解为双链,在非还原条件下SDS-PAGE显示神经毒素条带,在还原条件下SDS-PAGE只显示轻(L)、重(H)二链条带,而不显示神经毒素条带;纯化后毒素复合物的比活性提高了5.9倍,达到1.60×108LD50/mgPr;HPLC显示活性成分峰面积所占比例增加了9.83%。  相似文献   

14.
Experiments were performed to investigate the effect of cholera toxin (CT) on human B cell function. Highly purified (greater than 98% CD20+) human peripheral blood B cells were exposed to CT in the presence or absence of anti-mu antibody. Treatment of highly purified B cells with CT stimulated enhanced expression of surface DR molecules, whereas it did not enhance expression of other B cell surface activation markers including transferrin or IL-2R. Neither the A nor the B subunits of CT by themselves enhanced the expression of surface DR Ag. In addition, 8-bromo-cAMP alone or in combination with the B subunit did not increase the expression of human B cell surface DR Ag. These findings suggest that neither elevation of cAMP nor binding to GM1 ganglioside are sufficient to stimulate this activation parameter in B cells. Associated with CT-mediated enhanced expression of MHC class II molecules we found that CT-treated B cells also served as stronger stimulators, compared with control cells, of both autologous and allogeneic MLR responses in peripheral blood T cells. Although CT stimulated early events in B cell activation, it inhibited anti-mu antibody-induced B cell thymidine incorporation by 55 to 75%. Inhibitory effects of CT were observed even when CT was added to cultures as late as 36 h after the addition of the anti-mu antibody. These results suggest that CT has both a stimulatory and inhibitory effect on human B cells and that the stimulatory effect may be mediated via a cAMP-independent mechanism.  相似文献   

15.
T Pacuszka  P H Fishman 《Biochemistry》1992,31(20):4773-4778
We previously reported that when the oligosaccharide of ganglioside GM1 is covalently attached to cell surface proteins of GM1-deficient rat glioma C6 cells, the cells bind large amounts of cholera toxin (CT) but their cAMP response to CT is not enhanced [Pacuszka, T., & Fishman, P. H. (1990) J. Biol. Chem. 265, 7673-7668]. We now report that when such cells were exposed to CT in the presence of chloroquine, an acidotropic agent, they accumulated cAMP. This raised the possibility that CT bound to cell surface "neoganglioproteins" may be entering the cells through a different pathway from that of CT-bound GM1. To further explore this phenomenon, we covalently attached GM1 oligosaccharide to human transferrin (Tf). The modified protein (GM1OS-Tf) bound with high affinity to Tf receptors on HeLa cells and increased the binding of CT to the cells. The bound CT, however, was unable to activate adenylyl cyclase as measured by cyclic AMP accumulation. By contrast, treatment of HeLa cells with GM1 increased both CT binding and stimulation of cyclic AMP accumulation. Control cells and cells treated with either GM1 or GM1OS-Tf were exposed to CT in the presence of chloroquine. Whereas chloroquine had little or no effect on the response of control or GM1-treated cells to CT, it made the cells treated with GM1OS-Tf responsive to the toxin. Our results indicate that CT bound to its natural receptor GM1 enters the cells through a pathway different from that of toxin bound to neoganglioproteins.  相似文献   

16.
Mustard derivatives of ethyl-choline and hemicholinium-3 have been suggested as possible specific cholinergic neurotoxins. In this study a structural analog of hemicholinium-3, a,a'-bis[di(2-chloroethyl)amino]-4,4'-2-biacetophenone (toxin 7), was added to synaptosomes prepared from the cortex, striatum or hippocampus of rat brain. Synaptosomal high affinity choline uptake (HACU) was significantly decreased in a dose-dependent manner by addition of toxin 7, while synaptosomal uptake of GABA or dopamine was not changed. Incubation of cortical synaptosomes with the monosialoganglioside GM1 prevented the decrease in HACU seen following administration of toxin 7. This preventative effect of GM1 was greater if GM1 was added prior to or concomitant with toxin 7, than if GM1 was added following toxin 7. Two newly synthesized hemicholinium-3 analogs, 4-[3'-di(2-chloroethyl)aminopropionyl]biphenyl (toxin 5) and 4-[3'-di(2-bromoethyl)aminopropionyl]biphenyl (toxin 6) caused a large decrease in HACU when added to cortical synaptosomes, this decrease was significantly greater than that seen with the same dose of toxin 7 or ethyl-choline aziridinium (AF64A). Ultrastructural changes in the synaptosomal membrane following incubation with toxin 7 or toxin 7 with GM1 were examined by electron microscopy. Development of a compound which is both a potent neurotoxin, and is specific for cholinergic neurons will allow new insights into the normal function of the cholinergic system in the CNS and provide animal models of disease states in which cholinergic degeneration is an important element.  相似文献   

17.
Cd-binding peptide 1 (Cd-BP1) from S.pombe (1) has been purified and characterized. Cd-BP1 has a characteristic shoulder at 265 nm in UV absorption spectrum, and shows two marked Cotton bands at 257 nm (negative) and 275 nm (positive). These are not found in the other Cd-thioneins (2) and are unique properties of Cd-BP1 from S.pombe. With acidification (pH 2) and successive neutralization, a shoulder at 265 nm in UV spectrum and a Cotton band at 275 nm disappeared, and the molecular weight changed from 4 000 to 1 800. In connection with these changes, two molecular forms of Cd-binding peptide are considered.  相似文献   

18.
Approx. 70% of the sialic acid on the rat erythrocyte surface is susceptible to cleavage by neuraminidase (Vibrio cholerae). Neuraminidase treatment results in a reduction in the partition coefficient (K) of the red cells in a charged dextran-poly(ethylene glycol) aqueous phase system and in the electrophoretic mobility of the cells. Countercurrent distribution of rat neuraminidase-treated erythrocytes, containing 59Fe-labeled mature red cells of distinct age, indicates that (a) the electrophoretic mobilities of red cells in different cavities along the extraction train increase with increasing K, as is the case with untreated erythrocytes, and (b) the cell age-related differences in surface charge-associated properties are neither eliminated nor altered by the enzyme action.  相似文献   

19.
The organization of membrane subdomains in mammalian sperm has recently generated controversy, with several reports describing widely differing localization patterns for the ganglioside GM1. Using the pentameric B subunit of cholera toxin (CTB), we found GM1 to be restricted to the plasma membrane overlying the acrosome in the heads of live murine sperm. Interestingly, CTB had minimal binding to live bovine and human sperm. To investigate whether this difference in GM1 localization was because of species differences or differences between collection from the epididymis (mouse) or an ejaculate (bull, human), we examined epididymal bovine and human sperm. We found that GM1 localized to the plasma membrane overlying the acrosome in sperm from these species. To determine whether some component of seminal plasma was interfering with the ability of CTB to access GM1, we incubated epididymal mouse sperm with fluid from murine seminal vesicles and epididymal bull sperm with bovine seminal plasma. This treatment largely abolished the ability of the CTB to bind to GM1, producing a fluorescence pattern similar to that reported for the human. The most abundant seminal plasma protein, PDC-109, was not responsible for this loss. As demonstration that the seminal plasma was not removing GM1, sperm exposed to seminal plasma were fixed before CTB addition, and again displayed fluorescence over the acrosome. These observations reconcile inconsistencies reported for the localization of GM1 in sperm of different species, and provide evidence for the segregation of GM1 to a stable subdomain in the plasma membrane overlying the acrosome.  相似文献   

20.
The action of neuraminidase of influenza A virus, Sendai virus and Newcastle disease virus particles on bovine brain ganglioside GM1 and the properties of Sendai virus neuraminidase for GM1 were studied. With Sendai virus, GM1 was hydrolyzed to asialo-GM1 (GA1) and N-acetylneuraminic acid even in the absence of surfactant or other additives, while the hydrolysis of GM1 by Newcastle disease virus or influenza A virus was very low or undetectable under the same conditions. The formation of GA1 by Sendai virus neuraminidase was confirmed by thin-layer chromatography and immunodiffusion test using anti-GA1 antiserum. The apparent Km of Sendai virus neuraminidase for GM1 hydrolysis was found to be 2.67 x 10(-4) M and the optimum pH was 5.6. GM3, GM2 and oligosaccharide of GM1 were hydrolyzed more effectively than GM1 in the absence of surfactant (GM3 greater than GM2 greater than oligosaccharide of GM1 greater than GM1). The hydrolysis of GM1 by the Sendai virus enzyme was stimulated by the addition of sodium cholate or sodium taurocholate, but was inhibited by divalent cations (10 mM), Ca2+, Mg2+, ZN2+, Fe2+ and CU2+. In the absence of the surfactant, Sendai virus neuraminidase hydrolyzed GM1 more efficiently than Arthobacter ureafaciens neuraminidase which has been reported recently as being an adequate enzyme to hydrolyze ganglioside GM1 as a substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号