首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Viruses often elicit cell injury (cytopathic effect [CPE]), a major cause of viral diseases. CPE is usually considered to be a prerequisite for and/or consequence of efficient viral growth. Recently, we proposed that viral CPE may largely be due to host defensive and viral antidefensive activities. This study aimed to check the validity of this proposal by using as a model HeLa cells infected with mengovirus (MV). As we showed previously, infection of these cells with wild-type MV resulted in necrosis, whereas a mutant with incapacitated antidefensive ("security") viral leader (L) protein induced apoptosis. Here, we showed that several major morphological and biochemical signs of CPE (e.g., alterations in cellular and nuclear shape, plasma membrane, cytoskeleton, chromatin, and metabolic activity) in cells infected with L(-) mutants in the presence of an apoptosis inhibitor were strongly suppressed or delayed for long after completion of viral reproduction. These facts demonstrate that the efficient reproduction of a lytic virus may not directly require development of at least some pathological alterations normally accompanying infection. They also imply that L protein is involved in the control of many apparently unrelated functions. The results also suggest that the virus-activated program with competing necrotic and apoptotic branches is host encoded, with the choice between apoptosis and necrosis depending on a variety of intrinsic and extrinsic conditions. Implementation of this defensive suicidal program could be uncoupled from the viral reproduction. The possibility of such uncoupling has significant implications for the pathogenesis and treatment of viral diseases.  相似文献   

2.
Theiler's murine encephalomyelitis virus (TMEV) results in a persistent central nervous system infection (CNS) and immune-mediated demyelination in mice. TMEV largely persists in macrophages (Ms) in the CNS, and infected Ms in vitro undergo apoptosis, whereas the infection of other rodent cells produces necrosis. We have found that necrosis is the dominant form of cell death in BeAn virus-infected BHK-21 cells but that ~20% of cells undergo apoptosis. Mcl-1 was highly expressed in BHK-21 cells, and protein levels decreased upon infection, consistent with onset of apoptosis. In infected BHK-21 cells in which Mcl-1 expression was knocked down using silencing RNAs there was a 3-fold increase in apoptotic cell death compared to parental cells. The apoptotic program switched on by BeAn virus is similar to that in mouse Ms, with hallmarks of activation of the intrinsic apoptotic pathway in a tumor suppressor protein p53-dependent manner. Infection of stable Mcl-1-knockdown cells led to restricted virus titers and increased physical to infectious particle (PFU) ratios, with additional data suggesting that a late step in the viral life cycle after viral RNA replication, protein synthesis, and polyprotein processing is affected by apoptosis. Together, these results indicate that Mcl-1 acts as a critical prosurvival factor that protects against apoptosis and allows high yields of infectious virus in BHK-21 cells.  相似文献   

3.
Autographa californica nuclear polyhedrosis virus (AcMNPV) mutants that lack the apoptotic suppressor gene p35 cause apoptosis in Spodoptera frugiperda SF21 cells. To identify a viral signal(s) that induces programmed cell death, we first defined the timing of apoptotic events during infection. Activation of a P35-inhibitable caspase, intracellular fragmentation of host and AcMNPV DNA, and cell membrane blebbing coincided with the initiation of viral DNA synthesis between 9 and 12 h after infection and thus suggested that apoptotic signaling begins at or before this time. Virus entry was required since binding of budded virus to host cell receptors alone was insufficient to induce apoptosis. To therefore determine the contribution of early and late replication events to apoptotic signaling, we used the AcMNPV mutant ts8 with a temperature-sensitive lesion in the putative helicase gene p143. At the nonpermissive temperature at which viral DNA synthesis was conditionally blocked, ts8 caused extensive apoptosis of the SF21 cell line p3576D, which dominantly interferes with anti-apoptotic function of viral P35. Confirming that apoptosis can be induced in the absence of normal viral DNA synthesis, parental SF21 cells also underwent apoptosis when infected with a ts8 p35 deletion mutant at the nonpermissive temperature. However, maximum levels of ts8 p35 deletion mutant-induced apoptosis required a temperature-sensitive event(s) that included the initiation of viral DNA synthesis. Collectively, these data suggested that baculovirus-induced apoptosis can be triggered by distinct early (pre-DNA synthesis) and late replicative events, including viral DNA synthesis or late gene expression.  相似文献   

4.
Cells respond to poliovirus infection by switching on the apoptotic program, implementation of which is usually suppressed by viral antiapoptotic functions. We show here that poliovirus infection of HeLa cells or derivatives of MCF-7 cells was accompanied by the efflux of cytochrome c from mitochondria. This efflux occurred during both abortive infection (e.g., interrupted by guanidine-HCl and ending with apoptosis) and productive infection (leading to cytopathic effect). The former type of infection, but not the latter, was accompanied by truncation of the proapoptotic protein Bid. The virus-triggered cytochrome c efflux was suppressed by overexpression of Bcl-2. Both abortive and productive infections also resulted in a decreased level of procaspase-9, as revealed by Western blotting. In the former case, this decrease was accompanied by the accumulation of a protein with the electrophoretic mobility of active caspase-9. In contrast, in the productively infected cells, the latter protein was absent but caspase-9-related polypeptides with altered mobility could be detected. Both caspase-9 and caspase-3 were shown to be essential for the development of such hallmarks of virus-induced apoptosis as chromatin condensation, DNA degradation, and nuclear fragmentation. These and some other results suggest the following scenario. Poliovirus infection activates the apoptotic pathway, involving mitochondrial damage, cytochrome c efflux, and consecutive activation of caspase-9 and caspase-3. The apoptotic signal appears to be amplified by a loop which includes secondary processing of Bid. The implementation of the apoptotic program in productively infected cells may be suppressed, however, by the viral antiapoptotic functions, which act at a step(s) downstream of the cytochrome c efflux. The suppression appears to be caused, at least in part, by aberrant processing and degradation of procaspase-9.  相似文献   

5.
Cellular apoptosis induced by viral genes can play a critical role in determining virulence as well as viral persistence. This form of cell death has been of interest with respect to Theiler's murine encephalomyelitis virus (TMEV) because the GDVII strain and members of the GDVII subgroup are highly neurovirulent, while the DA strain and members of the TO subgroup induce a chronic progressive inflammatory demyelination with persistence of the virus in the central nervous system. The TMEV L protein has been identified as important in the pathogenesis of Theiler's virus-induced demyelinating disease (TMEV-IDD). We now show that DA L is apoptotic following transfection of L expression constructs or following DA virus infection of HeLa cells; the apoptotic activity depends on the presence of the serine/threonine domain of L, especially a serine at amino acid 57. In contrast, GDVII L has little apoptotic activity following transfection of L expression constructs in HeLa cells and is antiapoptotic following GDVII infection of HeLa cells. Of note, both DA and GDVII L cleave caspase-3 in BHK-21 cells, although neither implements the full apoptotic machinery in this cell type as manifested by the induction of terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. The differences in apoptotic activities of DA and GDVII L in varied cell types may play an important role in TMEV subgroup-specific disease phenotypes.  相似文献   

6.
Apoptosis is a potent host defense against microbes. Most viruses have adapted strategies to counteract this response. Herpes simplex virus (HSV) produces a balance between pro- and antiapoptotic processes during infection. When antiapoptotic signals become limiting, infected cells die through HSV-dependent apoptosis (HDAP). Oncogenic pathways were previously implicated in HDAP susceptibility. Here, we exploited our ability to selectively express all, one, or no oncogenes in the well-defined HeLa cell system to dissect the requirements for HDAP. Human papillomavirus E6 and E7 oncogene expression was inhibited by the E2 viral repressor. Sole expression of E6 mediated HDAP sensitization. Next, two known cellular targets of E6 were independently modulated. This demonstrated that E6 sensitizes HeLa cells to HDAP through hTERT and p53. Given the universality of the apoptotic antiviral response, p53 and telomerase regulation will likely be important for counteracting host defenses in many other viral infections.  相似文献   

7.
The induction of apoptosis in host cells is a prominent cytopathic effect of vesicular stomatitis virus (VSV) infection. The viral matrix (M) protein is responsible for several important cytopathic effects, including the inhibition of host gene expression and the induction of cell rounding in VSV-infected cells. This raises the question of whether M protein is also involved in the induction of apoptosis. HeLa or BHK cells were transfected with M mRNA to determine whether M protein induces apoptosis when expressed in the absence of other viral components. Expression of M protein induced apoptotic morphological changes and activated caspase-3 in both cell types, indicating that M protein induces apoptosis in the absence of other viral components. An M protein containing a point mutation that renders it defective in the inhibition of host gene expression (M51R mutation) activated little, if any, caspase-3, while a deletion mutant lacking amino acids 4 to 21 that is defective in the virus assembly function but fully functional in the inhibition of host gene expression was as effective as wild-type (wt) M protein in activating caspase-3. To determine whether M protein influences the induction of apoptosis in the context of a virus infection, the M51R M protein mutation was incorporated onto a wt background by using a recombinant infectious cDNA clone (rM51R-M virus). The timing of the induction of apoptosis by rM51R-M virus was compared to that by the corresponding recombinant wt (rwt) virus and to that by tsO82 virus, the mutant virus in which the M51R mutation was originally identified. In HeLa cells, rwt virus induced apoptosis faster than did rM51R-M virus, demonstrating a role for M protein in the induction of apoptosis. In contrast to the results obtained with HeLa cells, rwt virus induced apoptosis more slowly than did rM51R-M virus in BHK cells. This indicates that a viral component other than M protein contributes to induction of apoptosis in BHK cells and that wt M protein acts to delay induction of apoptosis by the other viral component. tsO82 virus induced apoptosis more rapidly than did rM51R-M virus in both HeLa and BHK cells. These two viruses contain the same point mutation in their M proteins, suggesting that sequence differences in genes other than that for M protein affect their rates of induction of apoptosis.  相似文献   

8.
In this study we evaluated the effect of phorbol ester tumor promoters on the kinetics of adenovirus type 5 (Ad5) replication in human cells. When added at the time of infection, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) accelerated the appearance of an early virus antigen (72,000-molecular-weight [72K] deoxyribonucleic acid-binding protein), the onset of viral deoxyribonucleic acid synthesis, and the production of infectious virus. The appearance of an Ad5-specific cytopathic effect (CPE) was also accelerated in infected cultures exposed to TPA, whereas phorbol, 4 alpha-phorbol-12,13-didecanoate and 4-OmeTPA, which are inactive as tumor promoters, were ineffective in inducing this morphological change. The acceleration of the CPE seen in TPA-treated Ad5-infected cells was not caused by TPA induction of the protease plasminogen activator, since the protease inhibitors leupeptin and antipain do not inhibit the earlier onset of this CPE and, in contrast, epidermal growth factor, which induces plasminogen activator in HeLa cells, does not induce an earlier CPE. Evidence for a direct effect of TPA on viral gene expression was obtained by analyzing viral messenger ribonucleic acid (mRNA) synthesis. TPA accelerated the appearance of mRNA from all major early regions of Ad5, transiently stimulated the accumulation of region III mRNA, and accelerated the appearance of late Ad5 mRNA. Thus, TPA altered the temporal program of Ad5 mRNA production and accelerated the appearance of at least some Ad5-specific polypeptides during lytic infection of human cells. These effects presumably explain the earlier onset of the Ad5-specific CPE in TPA-treated cells and may have relevance to the effects of TPA on viral gene expression in nonpermissive cells carrying integrated viral deoxyribonucleic acid sequences.  相似文献   

9.
Enteroviruses, including coxsackieviruses, exhibit significant tropism for the central nervous system, and these viruses are commonly associated with viral meningitis and encephalitis. Previously, we described the ability of coxsackievirus B3 (CVB3) to infect proliferating neuronal progenitor cells located in the neonatal subventricular zone and persist in the adult murine central nervous system (CNS). Here, we demonstrate that cultured murine neurospheres, which comprise neural stem cells and their progeny at different stages of development, were highly susceptible to CVB3 infection. Neurospheres, or neural progenitor and stem cells (NPSCs), isolated from neonatal C57BL/6 mice, supported high levels of infectious virus production and high viral protein expression levels following infection with a recombinant CVB3 expressing enhanced green fluorescent protein (eGFP) protein. Similarly, NPSCs isolated from neonatal actin-promoter-GFP transgenic mice (actin-GFP NPSCs) were highly susceptible to infection with a recombinant CVB3 expressing DsRed (Discosoma sp. red fluorescent protein). Both nestin-positive and NG2(+) progenitor cells within neurospheres were shown to preferentially express high levels of viral protein as soon as 24 h postinfection (p.i.). By day 3 p.i., viral protein expression and viral titers increased dramatically in NPSCs with resultant cytopathic effects (CPE) and eventual cell death. In contrast, reduced viral replication, lower levels of CPE, and diminished viral protein expression levels were observed in NPSCs differentiated for 5 or 16 days in the presence of fetal bovine serum (FBS). Despite the presence of CPE and high levels of cell death following early CVB3 infection, surviving neurospheres were readily observed and continued to express detectable levels of viral protein as long as 37 days after initial infection. Also, CVB3 infection of actin-GFP NPSCs increased the percentage of cells expressing neuronal class III β-tubulin following their differentiation in the presence of FBS. These results suggest that neural stem cells may be preferentially targeted by CVB3 and that neurogenic regions of the CNS may support persistent viral replication in the surviving host. In addition, normal progenitor cell differentiation may be altered in the host following infection.  相似文献   

10.
研究沙眼衣原体(D血清型)感染的HeLa229细胞中Bim蛋白质的表达及凋亡诱导剂作用后的凋亡情况。Western-blot检测沙眼衣原体感染和未感染的HeLa229细胞Bim蛋白质的表达水平。凋亡诱导剂etopo- side作用HeLa229细胞后,经Hoechst33258染色用荧光显微镜观察核浓缩和凋亡小体;流式细胞仪检测凋亡率。HeLa229细胞在未感染及感染沙眼衣原体6 h后可检测到Bim的表达;在感染24、48 h后均未检测到Bim的表达。经etoposide作用后,未感染的HeLa229细胞观察到明显的核浓缩和凋亡小体;流式细胞仪检测的凋亡率为90.64%。感染24 h的HeLa229细胞,未观察到核浓缩和凋亡小体;流式细胞仪检测的凋亡率为11.50%,与未感染的HeLa229细胞诱导后的凋亡率比较有统计学意义(P<0.05)。沙眼衣原体感染HeLa229细胞后可降低Bim蛋白质的表达;并能抑制etoposide诱导的细胞凋亡。  相似文献   

11.
Influenza virus infection induces apoptosis in cultured cells with an augmented expression of Fas (APO-1/CD95). Caspases, a family of cysteine proteases structurally related to interleukin-1-beta-converting enzyme (ICE), play crucial roles in apoptosis induced by various stimuli, including Fas. However, activation of the caspase-cascade seems to be different in various pathways of apoptotic stimuli. We therefore examined the involvement of caspases in influenza virus-induced apoptosis using caspase inhibitors. We found that z-VAD-fmk and z-IETD-fmk effectively inhibited virus-induced apoptosis, whereas Ac-DEVD-CHO and Ac-YVAD-CHO showed partial and little effect on virus-induced cell death, respectively. Consistently, caspase-3-like activity, but not caspase-1-like activity, was increased in the virus-infected cells. The transfection of plasmids encoding viral inhibitors of caspase (v-FLIP or crmA) into HeLa cells inhibited apoptosis by virus infection. The peptide inhibitors of caspases used in this study did not inhibit viral replication. We conclude that influenza virus infection activates some caspases, and that this activation may be downstream of viral replication.  相似文献   

12.
The herpes simplex virus type 1 (HSV-1) protein ICP27 has been implicated in a variety of functions important for viral replication including host shutoff, viral gene expression, activation of mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK), and apoptosis inhibition. In the present study we sought to examine the functions of ICP27 in the absence of viral infection by creating stable HeLa cell lines that inducibly express ICP27. Here, we characterize two such cell lines and show that ICP27 expression is associated with a cellular growth defect. The observed defect is caused at least in part by the induction of apoptosis as indicated by caspase-3 activation, annexin V staining, and characteristic changes in cellular morphology. In an effort to identify the function of ICP27 responsible for inducing apoptosis, we show that ICP27 expression is sufficient to activate p38 signaling to a level that is similar to that observed during wild-type HSV-1 infection. However, ICP27 expression alone is unable to lead to a strong activation of JNK signaling. Using chemical inhibitors, we show that the ICP27-mediated activation of p38 signaling is responsible for the observed induction of apoptosis in the induced cell lines. Our findings suggest that during viral infection, ICP27 activates p38 and JNK signaling pathways via two distinct mechanisms. ICP27 directly activates p38 signaling, leading to stimulation of the host cell apoptotic pathways. In contrast, robust activation of JNK signaling by ICP27 requires one or more delayed early or late viral gene products and may be associated with the inhibition of apoptosis.  相似文献   

13.
《Seminars in Virology》1994,5(5):341-348
Adenovirus infection and E1A gene expression stimulates cellular proliferation as a mechanism to facilitate virus replication. Programmed cell death (apoptosis) is the cellular response to this deregulation of growth control by E1A during viral infection and neoplastic transformation. To combat the suicidal elimination of virus infected cells by apoptosis, adenovirus has evolved a mechanism to disengage the apoptotic program of the cell. This anti-apoptotic function is encoded within the adenovirus E1B 19 kDa and 55 kDa gene products. Both viral products encoded by E1B act at independent and overlapping points in the cell death process to ensure that the premature death of the host cell does not take place and that viral infection can progress to completion. The E1B 55K protein functions as an anti-apoptotic gene product by direct physical interference with the p53 tumor suppressor protein, whereas the E1B 19K protein acts to inhibit p53-dependent and probably p53-independent apoptosis by a mechanism that resembles that of the human bcl-2 protooncogene.  相似文献   

14.
E1A expression during adenovirus infection induces apoptosis. E1A expression causes accumulation of the p53 tumor suppressor protein, and E1A-induced apoptosis is p53 mediated in primary rodent cells, implying that p53 induction may be linked to apoptosis induction by E1A. Adenoviruses containing mutations in the E1A gene were tested for the ability to trigger both p53 accumulation and the appearance of enhanced cytopathy (cyt phenotype) and degradation of DNA (deg phenotype), indicative of apoptosis in infected HeLa cells. The adenoviruses had mutations which disrupted the pRb- and/or p300-binding activities of E1A so that the relationship between p53 induction and apoptosis and binding to these cellular proteins by E1A could be determined. An E1A mutation that specifically disrupted the p300-binding activity failed to induce p53 accumulation, whereas mutations in E1A which affected pRb binding induced p53 accumulation. Thus, p300 binding was required and pRb binding was dispensable for E1A-mediated accumulation of p53 in HeLa cells. All the E1A mutant viruses, regardless of the ability to induce p53 accumulation, induced the cyt and deg phenotypes, suggesting that p53 induction in infected HeLa cells was not essential for apoptosis, nor was binding of E1A to the pRb and/or p300 protein. The possibility that E1A induced a p53-independent apoptosis pathway was tested by analyzing the appearance of the cyt and deg phenotypes in Saos-2 cells, which were null for both alleles of p53, upon adenovirus infection. An adenovirus expressing wild-type 12S E1A induced both the cyt and deg phenotypes in Saos-2 cells, as did all the E1A mutant viruses. Thus, E1A expression during infection of human cells may trigger redundant p53-independent and -dependent apoptotic pathways.  相似文献   

15.
Programmed cell death, or apoptosis, occurs throughout the course of normal development in most animals and can also be elicited by a number of stimuli such as growth factor deprivation and viral infection. Certain morphological and biochemical characteristics of programmed cell death are similar among different tissues and species. During development of the nematode Caenorhabditis elegans, a single genetic pathway promotes the death of selected cells in a lineally fixed pattern. This pathway appears to be conserved among animal species. The baculovirus p35-encoding gene (p35) is an inhibitor of virus-induced apoptosis in insect cells. Here we demonstrate that expression of p35 in C. elegans prevents death of cells normally programmed to die. This suppression of developmentally programmed cell death results in appearance of extra surviving cells. Expression of p35 can rescue the embryonic lethality of a mutation in ced-9, an endogenous gene homologous to the mammalian apoptotic suppressor bcl-2, whose absence leads to ectopic cell deaths. These results support the hypothesis that viral infection can activate the same cell death pathway as is used during normal development and suggest that baculovirus p35 may act downstream or independently of ced-9 in this pathway.  相似文献   

16.
17.
Coxsackievirus B3-induced apoptosis and caspase-3   总被引:11,自引:0,他引:11  
Yuan JP  Zhao W  Wang HT  Wu KY  Li T  Guo XK  Tong SQ 《Cell research》2003,13(3):203-209
  相似文献   

18.
Regulation and downstream effects of mitochondrial protein S-glutathionylation in response to oxidative stress are poorly understood. The study aim was to determine whether anti-oxidants such as catalase and estradiol alter mitochondrial protein S-glutathionylation and in turn affect apoptosis following ultraviolet B (UV-B) light irradiation. HeLa cells were transduced with increasing amounts of adenovirus encoding catalase (Ad-Cat) and β-galactosidase (Ad-Lac Z) or pre-incubated with estradiol before induction of apoptosis by UV-B light exposure. Inhibition of mitochondrial protein S-glutathionylation was assessed using autoantibodies specific for the non-S-glutathionylated form of PDC-E2. The percentage of apoptotic cells following UV-B irradiation were not significantly different between mock cells (cells with no virus infection) and Ad-Cat and Ad-Lac Z infected cells at all viral doses (all p > 0.050). Autoantibody staining of non-S-glutathionylated PDC-E2 in apoptotic cells was three times greater in only Ad-Cat infected cells compared to only Ad-Lac Z infected cells (81.3 ± 16.7 vs 26 ± 7.2 %, respectively, p = 0.030). Similarly estradiol treatment (33 and 100 nM) also significantly increased PDC-E2 staining in apoptotic cells compared to non-treated cells (both p < 0.010). The percentage of apoptotic cells was not significantly different with any of the estradiol concentrations (all p > 0.100). The observed procaspase 12 cleavage following UV-B irradiation suggests that a mitochondrial-independent apoptotic pathway was activated. In conclusion, following an apoptotic stimulus, estradiol may inhibit mitochondrial protein S-glutathionylation without inhibiting apoptosis. This effect may play a role in ninefold greater prevalence of autoantibodies against PDC-E2 in women with primary biliary cirrhosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号