首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knoblauch A  Palm G 《Bio Systems》2005,79(1-3):83-90
The response of a cortical neuron to a stimulus can show a very large variability when repeatedly stimulated by exactly the same stimulus. This has been quantified in terms of inter-spike-interval (ISI) statistics by several researchers (e.g., [Softky, W., Koch, C., 1993. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13(1), 334-350.]). The common view is that this variability reflects noisy information processing based on redundant representation in large neuron populations. This view has been challenged by the idea that the apparent noise inherent in brain activity that is not strictly related or temporally coupled to the experiment could be functionally significant. In this work we examine the ISI statistics and discuss these views in a recently published model of interacting cortical areas [Knoblauch, A., Palm, G., 2002. Scene segmentation by spike synchronization in reciprocally connected visual areas. I. Local effects of cortical feedback. Biol. Cybernet. 87(3), 151-167.]. From the results of further single neuron simulations we can isolate temporally modulated synaptic input as a main contributor for high ISI variability in our model and possibly in real neurons. In contrast to alternative mechanisms, our model suggests a function of the temporal modulations for short-term binding and segmentation of figures from background. Moreover, we show that temporally modulated inputs lead to ISI statistics which fit better to the neurophysiological data than alternative mechanisms.  相似文献   

2.
The effect of inhibition on the firing variability is examined in this paper using the biologically-inspired temporal noisy-leaky integrator (TNLI) neuron model. The TNLI incorporates hyperpolarising inhibition with negative current pulses of controlled shapes and it also separates dendritic from somatic integration. The firing variability is observed by looking at the coefficient of variation (C(V)) (standard deviation/mean interspike interval) as a function of the mean interspike interval of firing (delta tM) and by comparing the results with the theoretical curve for random spike trains, as well as looking at the interspike interval (ISI) histogram distributions. The results show that with 80% inhibition, firing at high rates (up to 200 Hz) is nearly consistent with a Poisson-type variability, which complies with the analysis of cortical neuron firing recordings by Softky and Koch [1993, J. Neurosci. 13(1) 334-530]. We also demonstrate that the mechanism by which inhibition increases the C(V) values is by introducing more short intervals in the firing pattern as indicated by a small initial hump at the beginning of the ISI histogram distribution. The use of stochastic inputs and the separation of the dendritic and somatic integration which we model in TNLI, also affect the high firing, near Poisson-type (explained in the paper) variability produced. We have also found that partial dendritic reset increases slightly the firing variability especially at short ISIs.  相似文献   

3.
The highly irregular firing of mammalian cortical pyramidal neurons is one of the most striking observation of the brain activity. This result affects greatly the discussion on the neural code, i.e. how the brain codes information transmitted along the different cortical stages. In fact it seems to be in favor of one of the two main hypotheses about this issue, named the rate code. But the supporters of the contrasting hypothesis, the temporal code, consider this evidence inconclusive. We discuss here a leaky integrate-and-fire model of a hippocampal pyramidal neuron intended to be biologically sound to investigate the genesis of the irregular pyramidal firing and to give useful information about the coding problem. To this aim, the complete set of excitatory and inhibitory synapses impinging on such a neuron has been taken into account. The firing activity of the neuron model has been studied by computer simulation both in basic conditions and allowing brief periods of over-stimulation in specific regions of its synaptic constellation. Our results show neuronal firing conditions similar to those observed in experimental investigations on pyramidal cortical neurons. In particular, the variation coefficient (CV) computed from the inter-spike intervals (ISIs) in our simulations for basic conditions is close to the unity as that computed from experimental data. Our simulation shows also different behaviors in firing sequences for different frequencies of stimulation.  相似文献   

4.
For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.  相似文献   

5.
From an observation of efferent interspike intervals of a neuron, we consider how to decode the input temporal information. It is found that the integrate-and-fire model is blind in the temporal domain due to the fact that its efferent firing rate is independent of the input temporal frequency. The conclusion is then confirmed for the integrate-and-fire model with correlated inputs, with reversal potentials, with a nonlinear leakage and with a subthreshold oscillation. For the Hodgkin-Huxley model, however, in terms of efferent firing rates alone, it is possible to read out the input temporal information.  相似文献   

6.
Sacerdote L  Lánský P 《Bio Systems》2002,67(1-3):213-219
The stochastic leaky integrate-and-fire (LIF) continuous model is studied under the condition that the amplitude of noise is a function of the input signal. The coefficient of variation (CV) of interspike intervals (ISIs) is investigated for different types of dependencies between the noise and the signal. Finally, we present the CV and the ISI density resulting from the special choice of parameters of the input that gave rise to a contra-intuitive behavior of the transfer function in Lánsky and Sacerdote [Phys. Lett. A 285 (2001) 132].  相似文献   

7.
Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.  相似文献   

8.
The Ornstein-Uhlenbeck process has been proposed as a model for the spontaneous activity of a neuron. In this model, the firing of the neuron corresponds to the first passage of the process to a constant boundary, or threshold. While the Laplace transform of the first-passage time distribution is available, the probability distribution function has not been obtained in any tractable form. We address the problem of estimating the parameters of the process when the only available data from a neuron are the interspike intervals, or the times between firings. In particular, we give an algorithm for computing maximum likelihood estimates and their corresponding confidence regions for the three identifiable (of the five model) parameters by numerically inverting the Laplace transform. A comparison of the two-parameter algorithm (where the time constant tau is known a priori) to the three-parameter algorithm shows that significantly more data is required in the latter case to achieve comparable parameter resolution as measured by 95% confidence intervals widths. The computational methods described here are a efficient alternative to other well known estimation techniques for leaky integrate-and-fire models. Moreover, it could serve as a template for performing parameter inference on more complex integrate-and-fire neuronal models.  相似文献   

9.
We show that the stochastic Morris–Lecar neuron, in a neighborhood of its stable point, can be approximated by a two-dimensional Ornstein–Uhlenbeck (OU) modulation of a constant circular motion. The associated radial OU process is an example of a leaky integrate-and-fire (LIF) model prior to firing. A new model constructed from a radial OU process together with a simple firing mechanism based on detailed Morris–Lecar firing statistics reproduces the Morris–Lecar Interspike Interval (ISI) distribution, and has the computational advantages of a LIF. The result justifies the large amount of attention paid to the LIF models.  相似文献   

10.
研究了无噪声影响下的Hcdgkin-Huxley神经元在正弦信号刺激下的动力学行为,并利用“魔梯”图和峰峰间期分布图来分别描述。数值模拟结果表明,当信号振幅一定时,神经元的发放情况随频率而改变;当信号的频率一定时,峰峰间期分布随振幅而改变,相应地,峰峰间期序列也具有不同的特点。  相似文献   

11.
Statistical properties of neuron firing are studied in the framework of a nonlinear leaky integrate-and-fire model that is driven by a slow periodic subthreshold signal. The firing events are characterized by first passage time densities. The experimentally better accessible interspike interval density generally depends on the sojourn times in a refractory state of the neuron. This aspect is not part of the integrate-and-fire model and must be modelled additionally. For a large class of refractory dynamics, a general expression for the interspike interval density is given and further evaluated for the two cases with an instantaneous resetting (i.e. no refractory state) and a refractory state possessing a deterministic lifetime. First passage time densities and interspike interval densities following from the proposed theory compare favorably with precise numerical simulations.  相似文献   

12.
In this paper, we study the influence of the coupling strength on the synchronization behavior of a population of leaky integrate-and-fire neurons that is self-excitatory with a population density approach. Each neuron of the population is assumed to be stochastically driven by an independent Poisson spike train and the synaptic interaction between neurons is modeled by a potential jump at the reception of an action potential. Neglecting the synaptic delay, we will establish that for a strong enough connectivity between neurons, the solution of the partial differential equation which describes the population density function must blow up in finite time. Furthermore, we will give a mathematical estimate on the average connection per neuron to ensure the occurrence of a burst. Interpreting the blow up of the solution as the presence of a Dirac mass in the firing rate of the population, we will relate the blow up of the solution to the occurrence of the synchronization of neurons. Fully stochastic simulations of a finite size network of leaky integrate-and-fire neurons are performed to illustrate our theoretical results.  相似文献   

13.
One-dimensional leaky integrate and fire neuronal models describe interspike intervals (ISIs) of a neuron as a renewal process and disregarding the neuron geometry. Many multi-compartment models account for the geometrical features of the neuron but are too complex for their mathematical tractability. Leaky integrate and fire two-compartment models seem a good compromise between mathematical tractability and an improved realism. They indeed allow to relax the renewal hypothesis, typical of one-dimensional models, without introducing too strong mathematical difficulties. Here, we pursue the analysis of the two-compartment model studied by Lansky and Rodriguez (Phys D 132:267–286, 1999), aiming of introducing some specific mathematical results used together with simulation techniques. With the aid of these methods, we investigate dependency properties of ISIs for different values of the model parameters. We show that an increase of the input increases the strength of the dependence between successive ISIs.  相似文献   

14.
Stochastic leaky integrate-and-fire models are popular due to their simplicity and statistical tractability. They have been widely applied to gain understanding of the underlying mechanisms for spike timing in neurons, and have served as building blocks for more elaborate models. Especially the Ornstein–Uhlenbeck process is popular to describe the stochastic fluctuations in the membrane potential of a neuron, but also other models like the square-root model or models with a non-linear drift are sometimes applied. Data that can be described by such models have to be stationary and thus, the simple models can only be applied over short time windows. However, experimental data show varying time constants, state dependent noise, a graded firing threshold and time-inhomogeneous input. In the present study we build a jump diffusion model that incorporates these features, and introduce a firing mechanism with a state dependent intensity. In addition, we suggest statistical methods to estimate all unknown quantities and apply these to analyze turtle motoneuron membrane potentials. Finally, simulated and real data are compared and discussed. We find that a square-root diffusion describes the data much better than an Ornstein–Uhlenbeck process with constant diffusion coefficient. Further, the membrane time constant decreases with increasing depolarization, as expected from the increase in synaptic conductance. The network activity, which the neuron is exposed to, can be reasonably estimated to be a threshold version of the nerve output from the network. Moreover, the spiking characteristics are well described by a Poisson spike train with an intensity depending exponentially on the membrane potential.  相似文献   

15.
We study a white-noise driven integrate-and-fire (IF) neuron with a time-dependent threshold. We give analytical expressions for mean and variance of the interspike interval assuming that the modification of the threshold value is small. It is shown that the variability of the interval can become both smaller or larger than in the case of constant threshold depending on the decay rate of threshold. We also show that the relative variability is minimal for a certain finite decay rate of the threshold. Furthermore, for slow threshold decay the leaky IF model shows a minimum in the coefficient of variation whenever the firing rate of the neuron matches the decay rate of the threshold. This novel effect can be seen if the firing rate is changed by varying the noise intensity or the mean input current.  相似文献   

16.
Cerebral responses evoked by peripheral stimuli are known to depend critically on the interstimulus interval (ISI). Here we report on the effects of ISI on somatosensory evoked magnetic fields (SEFs) to right median nerve stimulation, obtained in 9 healthy adults with ISIs of 0.15, 0.3, 1, 3 and 5 s. At the contralateral (left) primary sensorimotor cortex (SMI), the first cortical response, N20m, was stable between the ISIs 0.3 and 5 s, but slightly attenuated at the shortest ISI of 0.15 s. In contrast, the P35m and P60m deflections were very sensitive to changes of the ISI, declining steadily with shortening of the ISI throughout the entire range. These deflections were frequently undetectable at the shortest ISI of 0.15 s. Concomitant with the reductions of P35m and P60m, an N45m deflection was enhanced toward the short ISIs. Responses from second somatosensory cortex (SII) and posterior parietal cortex (PPC) were seen only with ISIs of 1 s or greater, being strongest at the 5 s ISI. Based on known effects of the ISI on intracellular evoked potentials, we present the following tentative model for the generation mechanism of the SMI response: N20m represents early excitatory postsynaptic potentials (EPSPs), P35m early inhibitory postsynaptic potentials (IPSPs), N45m secondary EPSPs and P60m late IPSPs in pyramidal neurones of area 3b. For practical purposes, SEFs from SMI can be obtained with short ISIs, while responses from SII and PPC require an ISI of at least 1 s.  相似文献   

17.
18.
Five parameters of one of the most common neuronal models, the diffusion leaky integrate-and-fire model, also known as the Ornstein-Uhlenbeck neuronal model, were estimated on the basis of intracellular recording. These parameters can be classified into two categories. Three of them (the membrane time constant, the resting potential and the firing threshold) characterize the neuron itself. The remaining two characterize the neuronal input. The intracellular data were collected during spontaneous firing, which in this case is characterized by a Poisson process of interspike intervals. Two methods for the estimation were applied, the regression method and the maximum-likelihood method. Both methods permit to estimate the input parameters and the membrane time constant in a short time window (a single interspike interval). We found that, at least in our example, the regression method gave more consistent results than the maximum-likelihood method. The estimates of the input parameters show the asymptotical normality, which can be further used for statistical testing, under the condition that the data are collected in different experimental situations. The model neuron, as deduced from the determined parameters, works in a subthreshold regimen. This result was confirmed by both applied methods. The subthreshold regimen for this model is characterized by the Poissonian firing. This is in a complete agreement with the observed interspike interval data. Action Editor: Nicolas Brunel  相似文献   

19.
The spike trains that transmit information between neurons are stochastic. We used the theory of random point processes and simulation methods to investigate the influence of temporal correlation of synaptic input current on firing statistics. The theory accounts for two sources for temporal correlation: synchrony between spikes in presynaptic input trains and the unitary synaptic current time course. Simulations show that slow temporal correlation of synaptic input leads to high variability in firing. In a leaky integrate-and-fire neuron model with spike afterhyperpolarization the theory accurately predicts the firing rate when the spike threshold is higher than two standard deviations of the membrane potential fluctuations. For lower thresholds the spike afterhyperpolarization reduces the firing rate below the theory's predicted level when the synaptic correlation decays rapidly. If the synaptic correlation decays slower than the spike afterhyperpolarization, spike bursts can occur during single broad peaks of input fluctuations, increasing the firing rate over the prediction. Spike bursts lead to a coefficient of variation for the interspike intervals that can exceed one, suggesting an explanation of high coefficient of variation for interspike intervals observed in vivo.  相似文献   

20.
The dynamic IV curve method was recently introduced for the efficient experimental generation of reduced neuron models. The method extracts the response properties of a neuron while it is subject to a naturalistic stimulus that mimics in vivo-like fluctuating synaptic drive. The resulting history-dependent, transmembrane current is then projected onto a one-dimensional current–voltage relation that provides the basis for a tractable non-linear integrate-and-fire model. An attractive feature of the method is that it can be used in spike-triggered mode to quantify the distinct patterns of post-spike refractoriness seen in different classes of cortical neuron. The method is first illustrated using a conductance-based model and is then applied experimentally to generate reduced models of cortical layer-5 pyramidal cells and interneurons, in injected-current and injected- conductance protocols. The resulting low-dimensional neuron models—of the refractory exponential integrate-and-fire type—provide highly accurate predictions for spike-times. The method therefore provides a useful tool for the construction of tractable models and rapid experimental classification of cortical neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号