共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
Pendini NR Bailey LM Booker GW Wilce MC Wallace JC Polyak SW 《Biochimica et biophysica acta》2008,1784(7-8):973-982
The attachment of biotin onto the biotin-dependent enzymes is catalysed by biotin protein ligase (BPL), also known as holocarboxylase synthase HCS in mammals. Mammals contain five biotin-enzymes that participate in a number of important metabolic pathways such as fatty acid biogenesis, gluconeogenesis and amino acid catabolism. All mammalian biotin-enzymes are post-translationally biotinylated, and therefore activated, through the action of a single HCS. Substrate recognition by BPLs occurs through conserved structural cues that govern the specificity of biotinylation. Defects in biotin metabolism, including HCS, give rise to multiple carboxylase deficiency (MCD). Here we review the literature on this important enzyme. In particular, we focus on the new information that has been learned about BPL's from a number of recently published protein structures. Through molecular modelling studies insights into the structural basis of HCS deficiency in MCD are discussed. 相似文献
4.
Heterogeneity of holocarboxylase synthetase in patients with biotin-responsive multiple carboxylase deficiency. 总被引:3,自引:0,他引:3 下载免费PDF全文
Holocarboxylase synthetase activity has been determined in fibroblasts of seven patients with the neonatal form of biotin-responsive multiple carboxylase deficiency. The normal Km for biotin was 15 +/- 3 nmol/l, while in the patients the values ranged from 48 to 1,062 nmol/l. The mean maximum velocity was 27% of normal. Differences among the values obtained for the Km for biotin and the heat stability of holocarboxylase synthetase suggested that the patients studied represented at least four distinct variants at the holocarboxylase synthetase locus. 相似文献
5.
Chung-Kyung Lee Young Ho Jeon 《Biochemical and biophysical research communications》2010,391(1):455-460
Holocarboxylase synthetase (HCS) is an essential enzyme that catalyzes the incorporation of biotin into apo carboxylase and the biotinylation of the four biotin-dependent carboxylases in the human cell. Deficiency of HCS results in decreased activity of these carboxylases and affects various metabolic processes. Despite the importance of this enzyme, the recognition mechanism of the biotinoyl domain by human HCS (hHCS) has remained unclear. We have developed a method to express hHCS in the baculovirus system and used it to purify catalytically active, full-length hHCS. NMR experiments on the biotinoyl domains from acetyl-CoA carboxylase indicate that when hHCS is added, it recognizes the MKM motif in human and in Escherichia coli with a preference to the human biotinoyl domain. In addition, hHCS can biotinylate the biotinoyl domains from human and E. coli acetyl-CoA carboxylase at similar rates compared to the E. coli biotin protein ligase, BirA, which reacts very slowly with the human biotinoyl domain. We propose that the hHCS has greater substrate acceptability, while the BirA has higher substrate specificity. These results provide insights into substrate recognition by hHCS, which can be distinguished from BirA in this respect. 相似文献
6.
7.
8.
Human holocarboxylase synthetase shows a high degree of sequence homology in the catalytic domain with bacterial biotin ligases such as Escherichia coli BirA, but differs in the length and sequence of the N-terminus. Despite several studies having been undertaken on the N-terminal region of hHCS, the role of this region remains unclear. We determined the structure of the N-terminal domain of hHCS by limited proteolysis and showed that this domain has a crucial effect on the enzymatic activity. The domain interacts not only with biotin acceptor protein, but also with the catalytic domain of hHCS, as shown by nuclear magnetic resonance (NMR) experiments. We propose that the N-terminal domain of hHCS recognizes the charged region of biotin acceptor protein, distinctly from the recognition by the catalytic domain.
Structured summary
MINT-7543113: hHCS (uniprotkb:P50747) and hHCS (uniprotkb:P50747) bind (MI:0407) by nuclear magnetic resonance (MI:0077)MINT-7543096, MINT-7543129: ACC75 (uniprotkb:O00763) and hHCS (uniprotkb:P50747) bind (MI:0407) by nuclear magnetic resonance (MI:0077)MINT-7543053: hHCS (uniprotkb:P50747) enzymaticly reacts (MI:0414) ACC75 (uniprotkb:O00763) by nuclear magnetic resonance (MI:0077)MINT-7543070: hHCS (uniprotkb:P50747) enzymaticly reacts (MI:0414) ACC75 (uniprotkb:O00763) by enzymatic study (MI:0415) 相似文献9.
Evidence for a defect of holocarboxylase synthetase activity in cultured lymphoblasts from a patient with biotin-responsive multiple carboxylase deficiency. 总被引:3,自引:2,他引:3 下载免费PDF全文
M E Saunders W G Sherwood M Duthie L Surh R A Gravel 《American journal of human genetics》1982,34(4):590-601
We report here the expression of biotin-responsive multiple carboxylase deficiency in cultured lymphoblasts of a patient whose fibroblasts belong to the bio genetic complementation group. Cultured lymphoblasts from the patient lost propionyl-CoA carboxylase (PCC) and beta-methylcrotonyl-CoA carboxylase (MCC) activities at a faster rate than normal cells when grown in biotin-deficient medium. Recovery of normal PCC and MCC activities, which was independent of protein synthesis, required a 2,500-fold higher biotin concentration than that required by normal lymphoblasts. Holocarboxylase synthetase activity was detected in cell-free extracts through the biotinylation of endogenous apo-PCC in the presence of ATP to form active holo-PCC. While the apo-PCC in extracts of normal biotin-starved lymphoblasts could be activated to 28% of maximal activity, extracts of patient lymphoblasts did not exhibit any ATP and biotin-dependent increase in PCC activity. A normal cell extract, cleared of apocarboxylases by immunoprecipitation, stimulated the PCC activity of a patient cell extract 20-fold. These results indicate that the apoenzyme in bio cells is normal and that the defect lies in the holocarboxylase synthetase. 相似文献
10.
Laurence Denis Marie Grossemy Roland Douce Claude Alban 《The Journal of biological chemistry》2002,277(12):10435-10444
Holocarboxylase synthetase (HCS), catalyzing the covalent attachment of biotin, is ubiquitously represented in living organisms. Indeed, the biotinylation is a post-translational modification that allows the transformation of inactive biotin-dependent carboxylases, which are committed in fundamental metabolisms such as fatty acid synthesis, into their active holo form. Among other living organisms, plants present a peculiarly complex situation. In pea, HCS activity has been detected in three subcellular compartments and the systematic sequencing of the Arabidopsis genome revealed the occurrence of two hcs genes (hcs1 and hcs2). Hcs1 gene product had been previously characterized at molecular and biochemical levels. Here, by PCR amplification, we cloned an hcs2 cDNA from Arabidopsis thaliana (Ws ecotype) mRNA. We observed the occurrence of multiple cDNA forms which resulted from the alternative splicing of hcs2 mRNA. Furthermore, we evidenced a nucleotide polymorphism at the hcs2 gene within the Ws ecotype, which affected splicing of hcs2 mRNA. This contrasted sharply with the situation at hcs1 locus. However, this polymorphism had no apparent effect on total HCS activity in planta. Finally, hcs2 mRNAs were found 4-fold less abundant than hcs1 mRNA and the most abundant hcs2 mRNA spliced variant should code for a truncated protein. We discuss the possible role of such a multiplicity of putative HCS proteins in plants and discuss the involvement of each of hcs genes in the correct realization of biotinylation. 相似文献
11.
Holocarboxylase synthetase (HCS) catalyzes the binding of biotin to lysines in carboxylases and histones in two steps. First, HCS catalyzes the synthesis of biotinyl-5′-AMP; second, the biotinyl moiety is ligated to lysine residues. It has been proposed that step two is fairly promiscuous, and that protein biotinylation may occur in the absence of HCS as long as sufficient exogenous biotinyl-5′-AMP is provided. Here, we identified a novel polypeptide (Syn67) with a basic patch of lysines and arginines. Yeast-two-hybrid assays and limited proteolysis assays revealed that both N- and C-termini of HCS interact with Syn67. A potential target lysine in Syn67 was biotinylated by HCS only after arginine-to-glycine substitutions in Syn67 produced a histone-like peptide. We identified a Syn67 docking site near the active pocket of HCS by in silico modeling and site-directed mutagenesis. Biotinylation of proteins by HCS is more specific than previously assumed. 相似文献
12.
Holocarboxylase synthetase (HCS) is a chromatin protein that is essential for mediating the covalent binding of biotin to histones. Biotinylation of histones plays crucial roles in the repression of genes and repeats in the human genome. We tested the feasibility of DNA adenine methyltransferase identification (DamID) technology to map HCS binding sites in human mammary cell lines. Full-length HCS was fused to DNA adenine methyltransferase (Dam) for subsequent transfection into breast cancer (MCF-7) and normal breast (MCF-10A) cells. HCS docking sites in chromatin were identified by using the unique adenine methylation sites established by Dam in the fusion construct; docking sites were unambiguously identified using methylation-sensitive digestion, cloning, and sequencing. In total, 15 novel HCS binding sites were identified in the two cell lines, and the following 4 of the 15 overlapped between MCF-7 and MCF-10A cells: inositol polyphosphate-5-phosphatase A, corticotropin hormone precursor, ribosome biogenesis regulatory protein, and leptin precursor. We conclude that DamID is a useful technology to map HCS binding sites in human chromatin and propose that the entire set of HCS binding sites could be mapped by combining DamID with microarray technology. 相似文献
13.
Molecular structure of the human asparagine synthetase gene 总被引:1,自引:0,他引:1
The human gene for asparagine synthetase has been isolated and the molecular organization has been determined by mapping and DNA sequencing of intron-exon boundaries. The gene spans 35 kb and contains 13 exons. The structure of the human gene has a high degree of similarity to that of the hamster asparagine synthetase gene, with identical positions for all but one of the intron regions. The 5' upstream region of this gene, like other housekeeping genes, lacks conventional TATA and CAAT boxes. Comparisons of the 5' upstream sequences of the human and hamster genes show limited similarity; however, both have a very high G + C content which may play a role in expression through DNA methylation. 相似文献
14.
Regulation and intracellular localization of the biotin holocarboxylase synthetase of 3T3-L1 cells 总被引:1,自引:0,他引:1
A quantitative assay has been developed to measure holocarboxylase synthetase activity in cellular extracts. This assay was based on measuring the incorporation of [3H]biotin of high specific activity (4.3 Ci/mmol) into purified rat liver apopyruvate carboxylase. With this assay, holocarboxylase synthetase in 3T3-L1 mouse fibroblasts has been monitored. During the differentiation of this cell from a fibroblast to an adipocyte, holocarboxylase synthetase activity was found to increase threefold, while pyruvate carboxylase activity rose 20-fold. The results suggest a possible relationship between the activity of the holocarboxylase synthetase and the level of the biotin-dependent carboxylases within the mammalian cell. Utilizing digitonin fractionation. the intracellular distribution of this enzyme has also been examined. In the 3T3-L1 cell, the large majority (approximately 70%) of the total holocarboxylase synthetase activity was found in the cytosolic compartment. 相似文献
15.
Glutathione synthetase (GS) catalyses the production of glutathione from gamma-glutamylcysteine and glycine in an ATP-dependent manner. Malfunctioning of GS results in disorders including metabolic acidosis, 5-oxoprolinuria, neurological dysfunction, haemolytic anaemia and in some cases is probably lethal. Here we report the crystal structure of human GS (hGS) at 2.1 A resolution in complex with ADP, two magnesium ions, a sulfate ion and glutathione. The structure indicates that hGS belongs to the recently identified ATP-grasp superfamily, although it displays no detectable sequence identity with other family members including its bacterial counterpart, Escherichia coli GS. The difficulty in identifying hGS as a member of the family is due in part to a rare gene permutation which has resulted in a circular shift of the conserved secondary structure elements in hGS with respect to the other known ATP-grasp proteins. Nevertheless, it appears likely that the enzyme shares the same general catalytic mechanism as other ligases. The possibility of cyclic permutations provides an insight into the evolution of this family and will probably lead to the identification of new members. Mutations that lead to GS deficiency have been mapped onto the structure, providing a molecular basis for understanding their effects. 相似文献
16.
17.
Autosomal recessive inheritance of human mitochondrial carbamyl phosphate synthetase deficiency. 下载免费PDF全文
J W McReynolds B Crowley M J Mahoney L E Rosenberg 《American journal of human genetics》1981,33(3):345-353
The mode of inheritance of hepatic mitochondrial carbamyl phosphate synthetase (CPS I) deficiency has not been established conclusively in the past. In this study, hepatic tissue obtained by percutaneous biopsy from all members of the immediate family of two girls affected with partial CPS I deficiency was assayed for CPS I, ornithine transcarbamylase (OTC), and arginase activities. Only values for CPS I activity differed significantly from those in controls. The two affected girls each had markedly reduced CPS I activities of about 6% of the control mean. Their brother had activity well within the normal range. Of greatest significance was the finding that both parents had activities below the 95% confidence limits in controls, and intermediate between the deficient values of the two girls and the control range. The father and mother had, respectively, 32% and 54% of mean control activity. These data indicate that CPS I deficiency is inherited as an autosomal recessive trait and that the two affected girls are homozygous for the mutant gene, their brother is homozygous for the normal allele, and the parents are heterozygous. 相似文献
18.
The structure of human phosphopantothenoylcysteine (PPC) synthetase was determined at 2.3 A resolution. PPC synthetase is a dimer with identical monomers. Some features of the monomer fold resemble a group of NAD-dependent enzymes, while other features resemble the ribokinase fold. The ATP, phosphopantothenate, and cysteine binding sites were deduced from modeling studies. Highly conserved ATP binding residues include Gly43, Ser61, Gly63, Gly66, Phe230, and Asn258. Highly conserved phosphopantothenate binding residues include Asn59, Ala179, Ala180, and Asp183 from one monomer and Arg55' from the adjacent monomer. The structure predicts a ping pong mechanism with initial formation of an acyladenylate intermediate, followed by release of pyrophosphate and attack by cysteine to form the final products PPC and AMP. 相似文献
19.
Thymidylate synthetase gene as a quantitative mutation marker in Chinese hamster cells 总被引:3,自引:0,他引:3
A quantitative mutation marker for cultured mammalian cells is presented which uses a selective medium containing folinic acid, aminopterin and thymidine (the 'FAT' medium) to select for mutants deficient in thymidylate synthetase (TS) activity. Optimization of FAT medium was carried out using Chinese hamster V79 cell lines having 3 levels of TS activity. By manipulating the concentration of folinic acid in FAT medium, TS-deficient mutants can be readily selected. TS mutation is inducible in a dose-dependent manner by either ethyl methanesulfonate or ultraviolet light irradiation. Expression time for TS mutation was also determined using two concentrations of ethyl methanesulfonate and found to be very short, being 1 or 2 days. This newly characterized TS mutation marker should be useful in the study of both spontaneous and induced mutagenesis. 相似文献
20.
Baolong Bao Rocio Rodriguez-Melendez Janos Zempleni 《The Journal of nutritional biochemistry》2012,23(6):635-639
Holocarboxylase synthetase (HCS) plays an essential role in catalyzing the biotinylation of carboxylases and histones. Biotinylated carboxylases are important for the metabolism of glucose, lipids and leucine; biotinylation of histones plays important roles in gene regulation and genome stability. Recently, we reported that HCS activity is partly regulated by subcellular translocation events and by miR-539. Here we tested the hypothesis that the HCS 3′-untranslated region (3′-UTR) contains binding sites for miR other than miR-539. A binding site for miR-153 was predicted to reside in the HCS 3′-UTR by using in silico analyses. When miR-153 site was overexpressed in transgenic HEK-293 human embryonic kidney cells, the abundance of HCS mRNA decreased by 77% compared with controls. In silico analyses also predicted three putative cytosine methylation sites in two miR-153 genes; the existence of these sites was confirmed by methylation-sensitive polymerase chain reaction. When cytosines were demethylated by treatment with 5-aza-2′-deoxycytidine, the abundance of miR-153 increased by more than 25 times compared with untreated controls, and this increase coincided with low levels of HCS and histone biotinylation. Together, this study provides novel insights into the mechanisms of novel epigenetic synergies among folate-dependent methylation events, miR and histone biotinylation. 相似文献