首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We had shown previously that all major glycoproteins of pigeon egg white contain Galalpha1-4Gal epitopes (Suzuki, N., Khoo, K. H., Chen, H. C., Johnson, J. R., and Lee, Y. C. (2001) J. Biol. Chem. 276, 23221-23229). We now report that Galalpha1-4Gal-bearing glycoproteins are also present in pigeon serum, lymphocytes, and liver, as probed by Western blot with Griffonia simplicifolia-I lectin (specific for terminal alpha-Gal) and anti-P1 (specific for Galalpha1-4Galbeta1-4GlcNAcbeta1-) monoclonal antibody. One of the major glycoproteins from pigeon plasma was identified as IgG (also known as IgY), which has Galalpha1-4Gal in its heavy chains. High pressure liquid chromatography, mass spectrometric (MS), and MS/MS analyses revealed that N-glycans of pigeon serum IgG included (i) high mannose-type (33.3%), (ii) disialylated biantennary complex-type (19.2%), and (iii) alpha-galactosylated complex-type N-glycans (47.5%). Bi- and tri-antennary oligosaccharides with bisecting GlcNAc and alpha1-6 Fuc on the Asn-linked GlcNAc were abundant among N-glycans possessing terminal Galalpha1-4Gal sequences. Moreover, MS/MS analysis identified Galalpha1-4Galbeta1-4Galbeta1-4GlcNAc branch terminals, which are not found in pigeon egg white glycoproteins. An additional interesting aspect is that about two-thirds of high mannose-type N-glycans from pigeon IgG were monoglucosylated. Comparison of the N-glycan structures with chicken and quail IgG indicated that the presence of high mannose-type oligosaccharides may be a characteristic of these avian IgG.  相似文献   

2.
Galalpha1-4Gal is typically found in mammalian glycolipids in small quantities, and recognized by some pathogens, such as uropathogenic Escherichia coli. In contrast, glycoproteins containing Galalpha1-4Gal were rarely found in vertebrates except in a few species of birds and amphibians until recently. However, we had previously reported that pigeon (Columba livia) egg white and serum glycoproteins are rich in N-glycans with Galalpha1-4Gal at non-reducing termini. Our investigation with egg white glycoproteins from 181 avian species also revealed that the distribution of (Galalpha1-4Gal)-containing glycoproteins was not rare among avians, and is correlated with the phylogeny of birds. The differentiated expression was most likely emerged at earlier stage of diversification of modern birds, but some birds might have lost the facility for the expression relatively recently.  相似文献   

3.
The galabiose structure Galalpha1-4Gal is rarely found in natural glycoproteins, but is abundantly present in pigeon egg white proteins as Galalpha(1-4)Galbeta(1-4)GlcNAc termini. Pigeon ovalbumin, ovomucoid, or the whole egg white were immobilized on periodate-oxidized Sepharose CL-6B gels by reductive amination. These gels were found to bind Shiga-like toxin type 1 (SLT-1) specifically and efficiently. SLT-1 was eluted from the gel beads with 0.5 M melibiose, which was more efficient and milder than elution with 4.5 M MgCl(2). SLT-1 was purified to homogeneity from the crude extract of Escherichia coli SLT100 expressing SLT-1 by a single affinity chromatographic step in 83-88% yield. The capacity of the gel was estimated to be ca. 1mg toxin/ml gel. Interestingly, SLT-2 was not bound by these affinity gels containing Galalpha1-4Galbeta1-4GlcNAc termini. Since SLT-2 has been shown to bind to Galalpha1-4Galbeta1-4Glc-terminating compounds, our results suggest that Glc in globotriose moiety is important for binding SLT-2, and replacing the Glc with GlcNAc in this triose renders it ineffective for binding SLT-2.  相似文献   

4.
Pseudomonas aeruginosa produces a galactophilic lectin, PA-IL, that resembles P-fimbrial adhesins of uropathogenic Escherichia coli strains in binding to human P blood group antigens. We examined, in the present study, its interaction with pigeon egg white glycoproteins carrying N-glycans with terminal Galalpha1-4Gal which inhibit the adhesion of P-fimbriae. For comparison, the lectin concanavalin A (Con A) and additional avian egg whites (of hen and quail) were also examined. The results obtained in both hemagglutination inhibition and Western blot analyses showed that PA-IL, unlike Con A, preferentially reacted with the pigeon egg white glycoproteins. These results, which confirmed PA-IL similarity in sugar specificity to E. coli P-fimbriae, demonstrated the advantage of this purified lectin for representing P-type and additional galactophilic microbial adhesins unavailable in purified stable form, in Western blot analyses.  相似文献   

5.
N-Glycans from major glycoproteins of pigeon egg white (ovotransferrin, ovomucoid, and ovalbumins) were enzymatically released and were reductively aminated with 2-aminopyridine, separated, and structurally characterized by mass spectrometry and a three-dimensional mapping technique using three different columns of high performance liquid chromatography (HPLC) (Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y., and Tomiya, N. (1995) Anal. Biochem. 226, 139-146). Twenty-five major N-glycan structures, all of them hitherto unknown, were identified as pyridylamino derivatives. Of these, 13 were neutral, 10 were monosialyl, and 2 were disialyl oligosaccharides. All N-glycans contain from one to four Galalpha(1,4)Galbeta(1,4) sequences at the nonreducing terminal positions and are devoid of fucose residues. N-Acetylneuraminic acids were alpha(2,6)-linked only to beta-galactose. The HPLC profiles of the N-glycans from four different glycoproteins were qualitatively very similar to each other, but not identical in the peak distributions. Monosialyl glycans were most abundant in all four glycoproteins, followed by neutral glycans. Disialyl glycans were lowest in ovotransferrin, and highest in ovomucoid. Triantennary structures with bisecting GlcNAc were predominant in ovotransferrin, and tetra-antennary (with and without bisecting GlcNAc-containing) structures were predominant in other glycoproteins. Penta-antennary structures (with a sialic acid and without bisecting GlcNAc residue) were also found in small quantities in all four glycoproteins. In contrast to the chicken egg white counterparts, which contain mostly high mannose and hybrid types, all N-glycan structures in the major pigeon egg white glycoproteins are complex type.  相似文献   

6.
Murine sperm initiate fertilization by binding to specific oligosaccharides linked to the zona pellucida, the specialized matrix coating the egg. Biophysical analyses have revealed the presence of both high mannose and complex-type N-glycans in murine zona pellucida. The predominant high mannose-type glycan had the composition Man(5)GlcNAc(2), but larger oligosaccharides of this type were also detected. Biantennary, triantennary, and tetraantennary complex-type N-glycans were found to be terminated with the following antennae: Galbeta1-4GlcNAc, NeuAcalpha2-3Galbeta1-4GlcNAc, NeuGcalpha2-3Galbeta1-4GlcNAc, the Sd(a) antigen (NeuAcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc, NeuGcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc), and terminal GlcNAc. Polylactosamine-type sequence was also detected on a subset of the antennae. Analysis of the O-glycans indicated that the majority were core 2-type (Galbeta1-4GlcNAcbeta1-6[Galbeta1-3]GalNAc). The beta1-6-linked branches attached to these O-glycans were terminated with the same sequences as the N-glycans, except for terminal GlcNAc. Glycans bearing Galbeta1-4GlcNAcbeta1-6 branches have previously been suggested to mediate initial murine gamete binding. Oligosaccharides terminated with GalNAcbeta1-4Gal have been implicated in the secondary binding interaction that occurs following the acrosome reaction. The significant implications of these observations are discussed.  相似文献   

7.
Wu AM  Singh T  Wu JH  Lensch M  André S  Gabius HJ 《Glycobiology》2006,16(6):524-537
Cell-surface glycans are functional docking sites for tissue lectins such as the members of the galectin family. This interaction triggers a wide variety of responses; hence, there is a keen interest in defining its structural features. Toward this aim, we have used enzyme-linked lectinosorbent (ELLSA) and inhibition assays with the prototype rat galectin-5 and panels of free saccharides and glycoconjugates. Among 45 natural glycans tested for lectin binding, galectin-5 reacted best with glycoproteins (gps) presenting a high density of Galbeta1-3/4GlcNAc (I/II) and multiantennary N-glycans with II termini. Their reactivities, on a nanogram basis, were up to 4.3 x 10(2), 3.2 x 10(2), 2.5 x 10(2), and 1.7 x 10(4) times higher than monomeric Galbeta1-3/4GlcNAc (I/II), triantennary-II (Tri-II), and Gal, respectively. Galectin-5 also bound well to several blood group type B (Galalpha1-3Gal)- and A (GalNAcalpha1-3Gal)-containing gps. It reacted weakly or not at all with tumor-associated Tn (GalNAcalpha1-Ser/Thr) and sialylated gps. Among the mono-, di-, and oligosaccharides and mammalian glycoconjugates tested, blood group B-active II (Galalpha1-3Gal beta1-4GlcNAc), B-active IIbeta1-3L (Galalpha1-3Galbeta1-4GlcNAc beta1-3Galbeta1-4Glc), and Tri-II were the best. It is concluded that (1) Galbeta1-3/4GlcNAc and other Galbeta1-related oligosaccharides with alpha1-3 extensions are essential for binding, their polyvalent form in cellular glycoconjugates being a key recognition force for galectin-5; (2) the combining site of galectin-5 appears to be of a shallow-groove type sufficiently large to accommodate a substituted beta-galactoside, especially with alpha-anomeric extension at the non-reducing end (e.g., human blood group B-active II and B-active IIbeta1-3L); (3) the preference within beta-anomeric positioning is Galbeta1-4 > or = Galbeta1-3 > Galbeta1-6; and (4) hydrophobic interactions in the vicinity of the core galactose unit can enhance binding. These results are important for the systematic comparison of ligand selection in this family of adhesion/growth-regulatory effectors with potential for medical applications.  相似文献   

8.
The rare NOR erythrocytes, which are agglutinated by most human sera, contain unique glycosphingolipids (globoside elongation products) terminating with the sequence Galalpha1-4GalNAcbeta1-3Gal- recognized by common natural human antibodies. Anti-NOR antibodies were isolated from several human sera by affinity procedures, and their specificity was tested by inhibition of antibody binding to NOR-tri-polyacrylamide (PAA) conjugate (ELISA) by the synthetic oligosaccharides, Galalpha1-4GalNAcbeta1-3Gal (NOR-tri), Galalpha1-4GalNAc (NOR-di), Galalpha1-4Galbeta1-3Galbeta1-4Glc ((Gal)3Glc), and Galalpha1-4Gal (P1-di). Two major types of subspecificity of anti-NOR antibodies were found. Type 1 antibodies were found to react strongly with (Gal)3Glc and NOR-tri and weakly with P1-di and NOR-di, which indicated specificity for the trisaccharide epitope Galalpha1-4Gal/GalNAcbeta1-3Gal. Type 2 antibodies were specific to Galalpha1-4GalNAc, because they were inhibited most strongly by NOR-tri and NOR-di and were not (or very weakly) inhibited by (Gal)3Glc and P1-di. Monoclonal anti-NOR antibodies were obtained by immunizing mice with NOR-tri-human serum albumin (HSA) conjugate and were found to have type 2 specificity. All anti-NOR antibodies reacted specifically with NOR glycolipids on thin-layer plates. The cross-reactivity of type 1 anti-NOR antibodies with Galalpha1-4Gal drew attention to a possible antigenic relationship between NOR and blood group P system glycolipids. The latter glycolipids include Pk (Galalpha1-4Galbeta1-4Glc-Cer) present in all normal erythrocytes and P1 (Galalpha1-4Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-Cer) present only in P1 erythrocytes. Sera of some P2 (P1-negative) persons contain natural anti-P1 antibodies. This prompted us to test the specificity of anti-P1 antibodies. Natural human anti-P1 isolated from serum of P2 individual and mouse monoclonal anti-P1 were best inhibited by Galalpha1-4Galbeta1-4GlcNAc (P1-tri) and did not react with NOR-tri and NOR-di. Monoclonal anti-P1 bound to Pk and P1 glycolipids and not to NOR glycolipids. These results indicated an entirely different specificity of anti-NOR and anti-P1 antibodies. Human serum samples differed in the content of anti-alpha-galactosyl antibodies, including both types of anti-NOR. In the sera of some individuals, type 1 or type 2 anti-NOR antibodies dominated, and other samples contained mixtures of both types of anti-NOR. The biological significance of these new abundant anti-alpha-galactosyl antibodies still awaits elucidation.  相似文献   

9.
The localization and characterization of oligosaccharide sequences in the cat testis was investigated using 12 lectins in combination with the beta-elimination reaction, N-Glycosidase F and sialidase digestion. Leydig cells expressed O-linked glycans with terminal alphaGalNAc (HPA reactivity) and N-glycans with terminal/internal alphaMan (Con A affinity). The basement membrane showed terminal Neu5Acalpha2,6Gal/GalNAc, Galbeta1,3GalNAc, alpha/betaGalNAc, and GlcNAc (SNA, PNA, HPA, SBA, GSA II reactivity) in O-linked oligosaccharides, terminal Galbeta1,4GlcNAc (RCA120 staining) and alphaMan in N-linked oligosaccharides; in addition, terminal Neu5acalpha2,3Galbeta1,4GlcNac, Forssman pentasaccharide, alphaGal, alphaL-Fuc and internal GlcNAc (MAL II, DBA, GSA I-B4, UEA I, KOH-sialidase-WGA affinity) formed both O- and N-linked oligosaccharides. The Sertoli cells cytoplasm contained terminal Neu5Ac-Galbeta1,4GlcNAc, Neu5Ac-betaGalNAc as well as internal GlcNAc in O-linked glycans, alphaMan in N-linked glycoproteins and terminal Neu5Acalpha2,6Gal/ GalNAc in both O- and N-linked oligosaccharides. Spermatogonia exhibited cytoplasmic N-linked glycoproteins with alphaMan residues. The spermatocytes cytoplasm expressed terminal Neu5Acalpha2,3Galbeta1,4 GlcNAc and Galbeta1,3GalNAc in O-linked oligosaccharides, terminal Galbeta1,4GlcNAc and alpha/betaGalNAc in N-linked glycoconjugates. The Golgi region showed terminal Neu5Acalpha2,3Galbeta1,4GlcNac, Galbeta1,4GlcNAc, Forssman pentasaccharide, and alphaGalNAc in O-linked oligosaccharides, alphaMan and terminal betaGal in N-linked oligosaccharides. The acrosomes of Golgi-phase spermatids expressed terminal Galbeta1,3GalNAc, Galbeta1,4GlcNAc, Forssmann pentasaccharide, alpha/betaGalNAc, alphaGal and internal GlcNAc in O-linked oligosaccharides, terminal alpha/betaGalNAc, alphaGal and terminal/internal alphaMan in N-linked glycoproteins. The acrosomes of cap-phase spermatids lacked internal Forssman pentasaccharide and alphaGal, while having increased alpha/betaGalNAc. The acrosomes of elongated spermatids did not show terminal Galbeta1,3GalNAc, displayed terminal Galbeta1,4GlcNAc and alpha/betaGalNAc in N-glycans and Neu5Ac-Galbeta1,3GalNAc in O-linked oligosaccharides.  相似文献   

10.
The white-tailed deer is the definitive host of the parasitic nematode Parelaphostrongylus tenuis. This parasite also infects a wide variety of domesticated livestock, causing a debilitating neurologic disease. Glycoconjugates are becoming increasingly implicated in nematode strategies to maintain persistent infections in immunologically competent hosts. In this study, we have carried out detailed mass spectrometric analysis together with classical biochemical techniques, including western blotting and immunohistochemical staining with anticarbohydrate monoclonal antibodies and have shown that P. tenuis contains complex-type N-glycans with the antennae capped with Galalpha1-3Galbeta1-4GlcNAc sequence. By mimicking a vertebrate glycan, Galalpha1-3Gal may aid the parasite in evading immunological detection by the host. This is the first report of the Galalpha1-3Gal sequence in a nematode.  相似文献   

11.
The parasitic helminth Schistosoma mansoni is a major public health concern in many developing countries. Glycoconjugates, and in particular the carbohydrate component of these products, represent the main immunogenic challenge to the host and could therefore represent one of the crucial determinants for successful parasite establishment. Here we report a comparative glycomics analysis of the N- and O-glycans derived from glycoproteins present in S. mansoni egg (egg-secreted protein) and cercarial (0-3-h released protein) secretions by a combination of mass spectrometric techniques. Our results show that S. mansoni secrete glycoproteins with glycosylation patterns that are complex and stage-specific. Cercarial stage secretions were dominated by N-glycans that were core-xylosylated, whereas N-glycans from egg secretions were predominantly core-difucosylated. O-Glycan core structures from cercarial secretions primarily consisted of the core sequence Galbeta1-->3(Galbeta1-->6)GalNAc, whereas egg-secreted O-glycans carried the mucin-type core 1 (Galbeta1-->3GalNAc) and 2 (Galbeta1-->3(GlcNAcbeta1-->6)GalNAc) structures. Additionally we identified a novel O-glycan core in both secretions in which a Gal residue is linked to the protein. Terminal structures of N- and O-glycans contained high levels of fucose and include stage-specific structures. These glycan structures identified in S. mansoni secretions are potentially antigenic motifs and ligands for carbohydrate-binding proteins of the host immune system.  相似文献   

12.
Natural anti-NOR antibodies are common in human sera and agglutinate human erythrocytes of a rare NOR phenotype. The NOR phenotype-related antigens are unique neutral glycosphingolipids recognized by these antibodies and Griffonia simplicifolia IB4 isolectin (GSL-IB4). The oligosaccharide chains of NOR glycolipids are terminated by Galalpha1-4GalNAcbeta1-3Galalpha units. To characterize the specificity of anti-NOR antibodies and compare it with specificities of GSL-IB4 and known anti-Galalpha1,3Gal antibodies, alpha-galactosylated saccharides and saccharide-polyacrylamide conjugates were used. New synthetic oligosaccharides, corresponding to the terminal di- and trisaccharide sequence of NOR glycolipids and the conjugate of the NOR-tri with HSA were included. These compounds were tested by microtiter plate ELISA and hemagglutination inhibition. Anti-NOR antibodies reacted most strongly with Galalpha1-4GalNAcbeta1-3Gal (NOR-tri), and over 100 times less strongly with Galalpha1-4GalNAc (NOR-di). The antibodies reacted also with Galalpha1-4Gal and Galalpha1-4Galbeta1-4GlcNAc, similarly as with NOR-di but not with other tested compounds. In turn, anti-Galalpha1,3Gal antibodies reacted most strongly with Galalpha1-3Gal and were very weakly inhibited by the NOR-related oligosaccharides (weaker than by galactose), and NOR-tri was less active than NOR-di. GSL-IB4 reacted with all tested alpha-galactosylated saccharides and conjugates, including the similarly active NOR-tri and NOR-di. These results showed that anti-NOR represent a new species of anti-alpha-galactosyl antibodies with high affinity for the Galalpha1-4GalNAcbeta1-3Gal sequence present in rare NOR erythrocytes.  相似文献   

13.
Surface plasmon resonance (SPR) was used to monitor the interaction of alphaGal-antibodies from human blood group O serum with linear blood group B-saccharides, employing Galalpha1-3Galbeta1-4GlcNAc-HSA immobilised on a sensor chip surface. Strong binding of antibodies, as evident from high relative response values exceeding 200 RU, was observed. The interaction was influenced by the nature of the oligosaccharide that was added to the antibody sample prior to measurement. For example, the addition of either of the linear B-saccharides Galalpha1-3Gal and Galalpha1-3Galbeta1-4GlcNAc produced complete inhibition of antibody binding to the sensor surface, whereas the addition of the related but non-specific blood group A saccharide, GalNAcalpha1-3(Fucalpha1-2)Gal, had little effect on binding. The technique was used for the rapid monitoring of the removal of alphaGal-antibodies from human serum by affinity columns, which contained either Galalpha1-3Gal or Galalpha1-3Galbeta1-4GlcNAc as ligand. The above carbohydrates are currently evaluated as inhibitors or as affinity ligands, in the prevention of hyperacute rejection during xenotransplantation.  相似文献   

14.
Mistletoe lectin I (ML-I) is a type II ribosome-inactivating protein, which inhibits the protein biosynthesis at the ribosomal level. ML-I is composed of a catalytically active A-chain with rRNA N-glycosidase activity and a B-chain with carbohydrate binding specificities. Using comparative solid-phase binding assays along with electrospray ionization tandem mass spectrometry, ML-I was shown to preferentially bind to terminally alpha2-6-sialylated neolacto series gangliosides from human granulocytes. IV(6)Neu5Ac-nLc4Cer, VI(6)Neu5Ac-nLc6Cer, and VIII(6)Neu5Ac-nLc8Cer were identified as ML-I receptors, whereas the isomeric alpha2-3-sialylated neolacto series gangliosides were not recognized. Only marginal binding of ML-I to terminal galactose residues of neutral glycosphingolipids with a Galbeta1-4Glc or Galbeta1-4GlcNAc sequence was determined, whereas a distal Galalpha1-4Gal, GalNAcbeta1-3Gal, or GalNAcbeta1-4Gal disaccharide did not bind at all. Among the glycoproteins investigated in Western blot and microwell adsorption assays, only those carrying Neu5Acalpha2-6Galbeta1-4GlcNAc residues, exclusively, predominantly, or even as less abundant constituents in an assembly with Neu5Acalpha2-3Galbeta1-4GlcNAc-terminated glycans, displayed high ML-I binding capacity. From our data we conclude that (i) ML-I has to be considered as a sialic acid- and not a galactose-specific lectin and (ii) neolacto series gangliosides and sialoglycoproteins with type II glycans, which share the Neu5Acalpha2-6Galbeta1-4GlcNAc terminus, are true ML-I receptors. This strict preference might help to explain the immunostimulatory potential of ML-I toward certain leukocyte subpopulations and its therapeutic success as a cytotoxic anticancer drug.  相似文献   

15.
Wu JH  Singh T  Herp A  Wu AM 《Biochimie》2006,88(2):201-217
Ricin (RCA60) is a potent cytotoxic protein with lectin domains, contained in the seeds of the castor bean Ricinus communis. It is a potential biohazard. To corroborate the biological properties of ricin, it is essential to understand the recognition factors involved in the ricin-glycotope interaction. In previous reports, knowledge of the binding properties of ricin was limited to oligosugars and glycopeptides with different specificities. Here, recognition factors of the lectin domains in ricin were examined by enzyme-linked lectinosorbent (ELLSA) and inhibition assays, using mammalian Gal/GalNAc structural units and corresponding polyvalent forms. Except for blood group GalNAcalpha1-3Gal (A) active and Forssman (GalNAcalpha1-3GalNAc, F) disaccharides, ricin has a broad range of affinity for mammalian disaccharide structural units-Galbeta1-4Glcbeta1-(Lbeta), Galbeta1-4GlcNAc (II), Galbeta1-3GlcNAc (I), Galbeta1-3GalNAcalpha1-(Talpha), Galbeta1-3GalNAcbeta1-(Tbeta), Galalpha1-3Gal (B), Galalpha1-4Gal (E), GalNAcbeta1-3Gal (P), GalNAcalpha1-Ser/Thr (Tn) and GalNAcbeta1-4Gal (S). Among the polyvalent glycotopes tested, ricin reacted best with type II-containing glycoproteins (gps). It also reacted well with several T (Thomsen-Friedenreich), tumor-associated Tn and blood group Sd. (a+)-containing gps. Except for bird nest and Tamm-Horsfall gps (THGP), this lectin reacted weakly or not at all with ABH-blood type and sialylated gps. From the present and previous results, it can be concluded that: (i) the combining sites of these lectin domains should be a shallow-groove type, recognizing Galbeta1-4Glcbeta1- and Galbeta1-3(4)GlcNAcbeta- as the major binding site; (ii) its size may be as large as a tetrasaccharide and most complementary to lacto-N-tetraose (Galbeta1-3GlcNAc beta1-3Galbeta1-4Glc) and lacto-N-neotetraose (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc); (iii) the polyvalency of glycotopes, in general, enhances binding; (iv) a hydrophobic interaction in the vicinity of the binding site for sugar accommodation, increases the affinity for Galbeta-. This study should assist in understanding the glyco-recognition factors involved in carbohydrate-toxin interactions in biological processes. The effect of the polyvalent P/S glycotopes on ricin binding should be examined. However, this is hampered by the lack of availability of suitable reagents.  相似文献   

16.
Glycoconjugates with terminal Galalpha1-3Galbeta1-4GlcNAc sequences (alpha-galactosyl epitopes, natural xenoreactive antigens) are present on various tissues in pigs and are recognized by human anti-alphagalactosyl (alphaGal) antibodies1. Hence xenotransplantation (pig-to-human) would trigger immune reactions involving complement activation and lead to the hyperactute rejection of the graft. Xenoreactive antigens are often studied by using the lectin Griffonia simplicifolia 1 isolectin B4 (GS1 B4), which shows high affinity to galactose. We here estimate the specificity of GS1 B4 for detecting various galactosyl epitopes by measuring lectin binding to neoglycoproteins, thyroglobulin and pig skeletal muscle. Enzyme linked lectin assays confirmed that GS1 B4 was highly specific to alpha-galactosylated neoglycoproteins while the lectin did not detect a beta-galactosylated ligand. The length of the sugar chains influenced the lectin-carbohydrate interaction. A monosaccharide linked to serum albumin showed higher lectin affinity than did neoglycoproteins with di- and tri-alpha-galactosyl epitopes. When the carbohydrate was extended, as in the xenoreactive pentasaccharide (Galalpha1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc), the carbohydrate- lectin interaction was meagre. Not only the terminal, but also the subterminal sugar affected the lectin binding because the GS1 B4 affinity to Galalpha1-3Gal was much stronger than to Galalpha1-3GalNAc. In bovine and porcine thyroglobulin most alphaGal epitopes appear to be cryptic, but are unmasked by a heat denaturation. In pig skeletal muscle there was lectin reaction not only in the muscle capillaries, but also in the connective tissue and intracellularly in muscle fibres. In Western blots of isolated proteins from pig muscle at least three bands were strongly stained after incubation with lectin.  相似文献   

17.
Pig-to-human xenotransplantation might be an option to overcome the increasing shortage of human donor organs. However, naturally occurring antibodies in human blood against the Galalpha1-->3Gal antigen on pig endothelial cells lead to hyperacute or, if prevented, acute or delayed vascular rejection of the pig graft. The purpose of this study was therefore to evaluate synthetic oligosaccharides with terminal Galalpha1-->3Gal to inhibit antigen-binding and cytotoxicity of anti-alphaGal antibodies against pig cells. Different oligosaccharides were synthesized chemically and by a combined chemico-enzymatic approach. These included monomeric di-, tri-, and pentasaccharides, a polyacrylamide-conjugate (PAA-Bdi), as well as di-, tetra-, and octamers of Galalpha1-->3Gal. All were tested for inhibitory activity by anti-alphaGal ELISA and complement-dependent cytotoxicity tests. PAA-Bdi was the best inhibitor of binding as well as cytotoxicity of anti-alphaGal antibodies. Monomeric oligosaccharides efficiently prevented binding of anti-alphaGal IgG, but less well that of anti-alphaGal IgM, with tri- and pentasaccharides showing a better efficacy than the disaccharide. The two trisaccharides Galalpha1-->3Galbeta1-->4GlcNAc and Galalpha1-->3Galbeta1-->3GlcNAc were equally effective. Oligomers of Galalpha1-->3Gal were more effective than monomers in blocking the binding of anti-alphaGal IgG. However, they could not block IgM binding, nor could they match the efficacy of PAA-Bdi. We conclude that oligosaccharides with terminal Galalpha1-->3Gal, most effectively as PAA-conjugates, can prevent binding and cytotoxicity of human anti-alphaGal in vitro. The PAA-Bdi conjugate might be most suited for use as a Sepharose-bound immunoabsorption material.  相似文献   

18.
Wu AM  Wu JH  Tsai MS  Herp A 《Life sciences》2000,66(26):2571-2581
The root of Trichosanthes kirilowii, which has been used as Chinese folk medicine for more than two thousand years, contains a Gal specific lectin (TKA). In order to elucidate its binding roles, the carbohydrate specificities of TKA were studied by enzyme linked lectinosorbent assay (ELLSA) and by inhibition of lectin-glycoform binding. Among glycoproteins (gp) tested, TKA reacted strongly with complex carbohydrates with Galbeta1-->4GlcNAc clusters as internal or core structures (human blood group ABH active glycoproteins from human ovarian cyst fluids, hog gastric mucin, and fetuin), porcine salivary glycoprotein and its asialo product, but it was inactive with heparin and mannan (negative control). Of the sugar inhibitors tested for inhibition of binding, Neu5Ac alpha2-->3/6Galbeta1-->4Glc was the best and about 4, 14.6 and 27.7 times more active than Galbeta1-->4GlcNAc(II), Galbeta1-->3GalNAc(T) and Gal, respectively. From these results, it is suggested that this agglutinin is specific for terminal or internal polyvalent Galbeta1-->4GlcNAcbeta1-->, terminal Neu5Ac alpha2-->3/6Galbeta1-->4Glc and cluster forms of Galbeta1-->3GalNAc alpha residues. The unusual affinity of TKA for terminal and internal Galbeta1-->glycotopes may be used to explain the possible attachment roles of this agglutinin in this folk medicine to target cells.  相似文献   

19.
The carbohydrate binding preferences of the Galalpha3Galbeta4 GlcNAc-binding lectins from Marasmius oreades and Euonymus europaeus were examined by binding to glycosphingolipids on thin-layer chromatograms and in microtiter wells. The M. oreades lectin bound to Galalpha3-terminated glycosphingolipids with a preference for type 2 chains. The B6 type 2 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) was preferred over the B5 glycosphingolipid (Galalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), suggesting that the alpha2-linked Fuc is accommodated in the carbohydrate binding site, providing additional interactions. The lectin from E. europaeus had broader binding specificity. The B6 type 2 glycosphingolipid was the best ligand also for this lectin, but binding to the B6 type 1 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer) was also obtained. Furthermore, the H5 type 2 glycosphingolipid (Fucalpha2Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), devoid of a terminal alpha3-linked Gal, was preferred over the the B5 glycosphingolipid, demonstrating a significant contribution to the binding affinity by the alpha2-linked Fuc. The more tolerant nature of the lectin from E. europaeus was also demonstrated by the binding of this lectin, but not the M. oreades lectin, to the x2 glycosphingolipid (GalNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer. The A6 type 2 glycosphingolipid (GalNAcalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GalNAcalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1-Cer were not recognized by the lectins despite the interaction with B6 type 2 glycosphingolipid and the B5 glycosphingolipid. These observations are explained by the absolute requirement of a free hydroxyl in the 2-position of Galalpha3 and that the E. europaea lectin can accommodate a GlcNAc acetamido moiety close to this position by reorienting the terminal sugar, whereas the M. oreades lectin cannot.  相似文献   

20.
Aplysia gonad lectin (AGL), which has been shown to stimulate mitogenesis in human peripheral lymphocytes, to suppress tumor cells, and to induce neurite outgrowth and improve cell viability in cultured Aplysia neurons, exhibits a peculiar galacturonic acid/galactose specificity. The carbohydrate binding site of this lectin was characterized by enzyme-linked lectino-sorbent assay and by inhibition of AGL-glycan interactions. Examination of the lectin binding with 34 glycans revealed that it reacted strongly with the following glycoforms: most human blood group precursor (equivalent) glycoproteins (gps), two Galalpha1-->4Gal-containing gps, and two d-galacturonic acid (GalUA)-containing polysaccharides (pectins from apple and citrus fruits), but poorly with most human blood group A and H active and sialylated gps. Among the GalUA and mammalian saccharides tested for inhibition of AGL-glycan binding, GalUA mono- to trisaccharides were the most potent ones. They were 8.5 x 10(4) times more active than Gal and about 1.5 x 10(3) more active than the human blood group P(k) active disaccharide (E, Galalpha1-->4Gal). This disaccharide was 6, 28, and 120 times more efficient than Galbeta1-->3GlcNAc(I), Galbeta1-->3GalNAc(T), and Galbeta1--> 4GlcNAc (II), respectively, and 35 and 80 times more active than melibiose (Galalpha1-->6Glc) and human blood group B active disaccharide (Galalpha1-->3Gal), respectively, showing that the decreasing order of the lectin affinity toward alpha-anomers of Gal is alpha1-->4 > alpha1-->6 > alpha1-->3. From the data provided, the carbohydrate specificity of AGL can be defined as GalUAalpha1-->4 trisaccharides to mono GalUA > branched or cluster forms of E, I, and II monomeric E, I, and II, whereas GalNAc is inactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号